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Enhanced Computer Vision Methods for Cancer Detection
and Precision Guidance in Medical Imaging

Medical imaging is a cornerstone of modern healthcare, facilitating diagnosis,
treatment planning, and patient management through visualization of the anatomy.
Imaging modalities such as X-ray, CT, MRI, ultrasound and especially natural (RGB)
images have transformed the field, offering detailed views that are essential for
understanding a wide range of medical conditions. However, the interpretation
of these images often relies heavily on the skill and expertise of clinicians, and
diagnostic errors can arise from subtle anatomical variations or complex patho-
logical conditions that are difficult to detect. The advent of advanced computer
vision techniques, particularly deep learning-based image analysis methods, of-
fers a promising solution to these challenges. The objective of this research is
to develop and enhance computer vision techniques for various applications in
medical imaging. Specifically, this work explores methods to support early cancer
detection, improve segmentation accuracy and uncertainty quantification, detect
abnormalities/anomalies across multiple imaging modalities, and provide reliable
guidance during minimally invasive surgeries.

The detection and treatment of pancreatic ductal adenocarcinoma (PDAC),
a highly aggressive and lethal cancer, have been significantly enhanced by the
application of computer-aided detection (CADe) systems. Chapter 3 focuses on the
development of a CADe system for PDAC, reviewing prior work in the field and
introducing a new method that integrates secondary features into the detection
process. Early detection of pancreatic cancer is difficult, since the pancreas has a
complicated 3D shape and the early tumor does not always appear hypodense and
clearly visible in CT. Clinical experts refer to secondary tumor-indicative features
to enhance their understanding and detection performance. These secondary
tumor-indicative features improve the CADe system’s ability to detect pancreatic
tumors when integrated along with the CT scan. The developed CADe system
yields a high detection performance of 0.99 Area Under the Receiver Operating
Characteristic (AUROC), thereby suggesting potential improvement in patient
outcomes. The chapter also covers advanced segmentation techniques, enabling
accurate identification of the pancreas and surrounding anatomical structures,
forming a comprehensive framework for PDAC detection and localization.

Chapter 4 addresses the concept of uncertainty in medical image segmenta-
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tion. In image analysis, accounting for uncertainty in segmentation is essential
for improving the reliability of model predictions, especially given the significant
interobserver and intraobserver variability, commonly observed among clinicians.
This variability underscores the inherent uncertainty in interpreting medical im-
ages, making robust uncertainty quantification a critical factor. The research devel-
ops methods to quantify aleatoric uncertainty in both 2D and 3D medical image
segmentation tasks. A significant contribution in this chapter is the incorporation
of Normalizing Flows (NFs) into the Probabilistic U-Net (PU-Net), which allows
for more flexible posterior distributions. This enhancement improves the model’s
ability to handle uncertainty in ambiguous images (14% improvement in the GED
metric).

Chapter 5 explores a concrete application of the PU-Net, which further builds
on both the preceding chapters by developing a method for predicting the re-
sectability of PDAC, a critical determinant in formulating appropriate treatment
strategies. The research uses segmentation models as a proxy for involvement
prediction in two steps. First, the models accurately delineate both the tumor
(0.66 DSC) and vasculature (veins 0.88 DSC, arteries 0.86 DSC). Second, any in-
volvement of the tumor from the computed segmentation maps is computed
(high sensitivity of 0.88 and specificity of 0.86) and then a degree of involvement
is calculated (0.89 accuracy with 3D PU-Net). By integrating uncertainty into
these models, the framework provides clinicians with more reliable resectability
assessments, offering critical support in surgical planning. These advancements
have significant implications for improving surgical outcomes in pancreatic cancer
patients, particularly those eligible for resection.

Chapter 6 investigates the use of generative models to detect both semantic
and covariate Out-of-Distribution (OOD) data. OOD involves identifying inputs
that deviate from the model’s training data, signaling unfamiliar or novel sce-
narios. A novel semantic OOD detection methodology utilizing wavelet-based
Normalizing Flows is introduced. It is shown that the modeled Haar-wavelet
components are effective at distinguishing between the semantic difference in
the abundant benign melanoma and previously unseen malignant melanoma
(0.79 AUROC), while utilizing a small 1.25-Million parameter model. Addition-
ally, the chapter further explores the detection of OOD covariate shifts, offering a
comprehensive strategy for identifying distributional anomalies for avoiding er-
roneous predictions and analyses. CovariateFlow is introduced as a novel method
that models the heteroscedastic high-frequency image components, thereby im-
proving the ability to detect covariate shift. A detection score of 0.75 AUROC on
CIFAR10(-C), 0.72 AUROC on ImageNet200-(C) and 0.93 AUROC in the X-ray
setting is obtained. These methods are instrumental in enhancing the safety and
reliability of data-driven diagnostic tools by detecting corrupted or unfamiliar
data samples, particularly in clinical environments where distribution shifts can
lead to diagnostic errors.

Finally, Chapter 7 introduces the development of a pose estimation technique
for use in image-guided surgeries, specifically those involving X-ray imaging. The

ii



research presents a general-purpose 6-degrees-of-freedom (6-DoF) pose estimation
model that can account for the variability in X-ray imaging geometries, improving
the accuracy and real-time performance of surgical guidance systems. The effec-
tiveness of the proposed YOLOv5-6D model as a general-purpose approach for
6-DoF object/instrument pose estimation is tested on the public LINEMOD bench-
mark, obtaining 96.84% ADD(-S) at 42 FPS. In the X-ray domain, the same model
shows efficacy in three settings: (1) test Cube at 99.27% ADD(-S), (2) a cannulated
cancellous spinal screw at 96.87% ADD(-S) and (3) the screws in a human-spine
phantom at 92.41% ADD(-S). This work addresses a critical challenge in minimally
invasive surgeries, such as precise instrument positioning during spinal surgeries.
This work enhances the state-of-the-art precision and safety of these procedures.

The research presented in this thesis makes substantial contributions to the
advancement of computer-aided detection, image-guided surgery, and medical
image segmentation, offering novel solutions to critical challenges in medical
imaging. A major outcome is the development of enhanced CADe systems for
pancreatic cancer detection, incorporating secondary tumor-indicative features
that improve diagnostic accuracy and enable earlier detection, which is pivotal
for better patient outcomes. This thesis also introduces innovative improvements
for uncertainty quantification, addressing the inherent variability and ambiguity
in medical images, for the purpose of improving the robustness of segmenta-
tion models used in clinical practice. Additionally, key breakthroughs in Out-
of-Distribution (OOD) detection are presented, offering a powerful approach to
ensure the reliability of medical image analysis, particularly in the presence of
data that falls outside the model’s training distribution, a frequent issue in clinical
environments. The work on 6-DoF pose estimation further strengthens the thesis
by advancing real-time guidance systems in X-ray towards higher accuracy, of-
fering practical applications in minimally invasive surgeries where precision and
safety are paramount. These contributions are poised to accelerate the adoption
of data-driven tools in healthcare, leading to more precise, reliable, and efficient
medical diagnostics and interventions.
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Verbeterde computervisiemethodes voor kankerdetectie en precisiegeleide
instrumenten in medische beeldvorming

Medische beeldvorming is een hoeksteen van de moderne gezondheidszorg en
ondersteunt de diagnose, het behandelplan en het patiëntmanagement door mid-
del van visualisatie van de anatomie. Beeldvormingstechnieken zoals röntgen,
CT, MRI, echografie en vooral natuurlijke (RGB) beelden hebben het werkgebied
veranderd door gedetailleerde visuele representaties te bieden die essentieel zijn
voor het begrijpen van een breed scala aan medische aandoeningen. De inter-
pretatie van de gebruikte beelden hangt echter sterk af van de vaardigheden en
expertise van clinici, waarbij diagnostische fouten kunnen voortkomen uit subtiele
anatomische variaties of complexe pathologische condities die moeilijk te detecte-
ren zijn. De opkomst van geavanceerde technieken in computervisie, met name
diep lerende (deep learning) beeldanalyse, biedt een veelbelovende oplossing voor
deze uitdagingen. Het doel van dit onderzoek is om computervisietechnieken
te ontwikkelen en te verbeteren voor diverse toepassingen bij medische beeld-
vorming. Het onderzoek in deze dissertatie richt zich specifiek op methoden ter
ondersteuning van vroege kankerdetectie, betere nauwkeurigheid van segmenta-
tie en kwantificering van onzekerheid, detectie van afwijkingen/anomalieën in
verschillende beeldvormingstechnieken, en betrouwbare instrumentbegeleiding
tijdens minimaal invasieve operaties.

De detectie en behandeling van een ductaal adenocarcinoom in/bij de al-
vleesklier (PDAC), een zeer agressieve en dodelijke vorm van kanker, zijn aan-
zienlijk verbeterd door de toepassing van computerondersteunde detectiesyste-
men (CADe). Hoofdstuk 3 behandelt de ontwikkeling van een CADe-systeem
voor PDAC, waarin eerder werk op dit gebied wordt besproken en een nieuwe
methode wordt geı̈ntroduceerd die secundaire kenmerken integreert in het de-
tectieproces. Vroege detectie van alvleesklierkanker is uitdagend, aangezien de
alvleesklier een complexe driedimensionale structuur heeft en vroege tumoren
niet altijd hypodens en duidelijk zichtbaar zijn in CT-beelden. Daarom gebruiken
klinische experts secundaire indicatieve tumorkenmerken om hun begrip en de-
tectieprestaties te verbeteren. Deze secundaire tumorkenmerken versterken het
vermogen van het CADe-systeem om alvleeskliertumoren te detecteren wanneer
ze worden geı̈ntegreerd met de CT-scan. Het ontwikkelde CADe-systeem behaalt
een hoge detectieprestatie van 0.99 Area Under the Receiver Operating Characteris-
tic (AUROC), wat suggereert dat het de patiëntuitkomsten kan verbeteren. Het
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hoofdstuk behandelt ook geavanceerde segmentatietechnieken, die een nauw-
keurige identificatie van de alvleesklier en omliggende anatomische structuren
mogelijk maken. Dit biedt een goed en uitgebreid raamwerk voor succesvolle
detectie en lokalisatie van PDAC.

Hoofdstuk 4 beschrijft het concept van onzekerheid in medische beeldseg-
mentatie. Bij beeldanalyse is het van cruciaal belang om rekening te houden met
onzekerheid in segmentatie voor het verbeteren van de betrouwbaarheid van
modelvoorspellingen, vooral gezien de significante variabiliteit bij individuele
waarnemers en tussen waarnemers onderling, hetgeen vaak gebeurt bij clinici.
Deze variabiliteit benadrukt de inherente veranderlijkheid en onzekerheid bij het
interpreteren van medische beelden, wat robuuste kwantificering van onzekerheid
tot een kritieke factor maakt. Het onderzoek ontwikkelt methoden om aleatori-
sche onzekerheid te kwantificeren voor zowel 2D- als 3D-segmentatietaken. Een
belangrijke bijdrage in dit hoofdstuk is de integratie van zogenaamde Normalizing
Flows (NFs) ofwel een statistische modellering in het probabilistische U-Net mo-
del (PU-Net), waarmee meer flexibiliteit wordt geboden bij gebruik van a-posteriori
kansverdelingen. Deze verbetering verhoogt het vermogen van het model om met
onzekerheid om te gaan in ambigue beelden (14% verbetering in de GED-metriek).

Hoofdstuk 5 verkent een concrete toepassing van het PU-Net model, die voort-
bouwt op de voorgaande hoofdstukken door een methode te ontwikkelen voor het
voorspellen van een mogelijke operatieve verwijdering (reseceerbaarheid) van het
PDAC, een kritieke factor bij het formuleren van geschikte behandelstrategieën.
Het onderzoek maakt gebruik van segmentatiemodellen als autorisatiemethode
voor de betrokkenheidsvoorspelling in twee stappen. Eerst vindt een nauwkeu-
rige modelsegmentatie plaats van zowel de tumor (0,66 DSC) als de bloedvaten
(aders 0,88 DSC, slagaders 0,86 DSC). Vervolgens wordt elke betrokkenheid van
de tumor op basis van de berekende segmentatiegebieden bepaald (hoge sensi-
tiviteit van 0,88 en specificiteit van 0,86), en wordt de mate van betrokkenheid
berekend (0,89 nauwkeurigheid met het 3D PU-Net model). Door onzekerheid
in deze modellen te integreren, biedt het gehele raamwerk aan clinici een be-
tere betrouwbaarheid bij de beoordeling van reseceerbaarheid, wat essentiële
ondersteuning biedt bij chirurgische planning. Deze vooruitgang heeft positieve
implicaties voor alvleesklierkankerpatiënten die in aanmerking komen voor een
operatieve alvleesklierverwijdering.

Hoofdstuk 6 onderzoekt het gebruik van generatieve modellen om zowel
semantische als covariate Out-of-Distribution (OOD)-data te detecteren. OOD om-
vat het identificeren van inputbeelden die afwijken van de trainingsdata van
het model, wat duidt op onbekende of nieuwe scenario’s. Een nieuwe semanti-
sche OOD-detectiemethode wordt geı̈ntroduceerd, die gebruik maakt van wave-
let-gebaseerde Normalizing Flows distributies. Het wordt aangetoond dat de gemo-
delleerde Haar-wavelet componenten effectief zijn in het onderscheiden van het
semantische verschil tussen de overvloedig aanwezige goedaardige melanomen
en voorheen onbekende sporadische kwaadaardige melanomen (0,79 AUROC),
terwijl bovendien een klein model met slechts 1,25 miljoen parameters wordt
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gebruikt. In het hoofdstuk gaat het onderzoek verder in op de detectie van OOD
covariate shifts en biedt een uitgebreide strategie voor het identificeren van afwij-
kingen in distributies om foutieve voorspellingen en analyses te voorkomen. Een
CovariateFlow model wordt geı̈ntroduceerd als een nieuwe methode die de hete-
roscedastische hoogfrequente beeldcomponenten modelleert en zo het vermogen
verbetert om covariate distributieverschuivingen te detecteren. Een detectiescore
van 0,75 AUROC op CIFAR10(-C), 0,72 AUROC op ImageNet200(-C) en 0,93 AU-
ROC met röntgenbeelddata wordt behaald. Deze methoden zijn van essentieel
belang voor het verbeteren van de veiligheid en betrouwbaarheid van datageleide
diagnostische hulpmiddelen door gecorrumpeerde of onbekende datasamples te
detecteren, vooral in klinische omgevingen waar datadistributieverschuivingen
kunnen leiden tot diagnostische fouten.

Tot slot introduceert hoofdstuk 7 de ontwikkeling van een pose-schattings-
techniek voor instrumentgebruik bij beeldgeleide operaties, met name geschikt
voor röntgenbeelden. Het onderzoek presenteert een algemeen toepasbaar model
voor pose-schatting met zes vrijheidsgraden (6-DoF), dat rekening houdt met de
variabiliteit in geometrie bij röntgenbeelden en dat de nauwkeurigheid en real-
time prestaties van chirurgische begeleidingssystemen verbetert. De effectiviteit
van het voorgestelde YOLOv5-6D-model als algemene aanpak voor 6-DoF-object-
/instrument-poseschatting wordt getest op de openbare LINEMOD-dataset, dat
resulteert in 96,84% ADD(-S) bij 42 FPS (frames/seconde). In de röntgenomgeving
toont hetzelfde model zijn effectiviteit onder drie omstandigheden: (1) testset Cube
met 99,27% ADD(-S), (2) een gecannuleerde spinale schroef met 96,87% ADD(-S)
en (3) de schroeven in een menselijk ruggenmergfantoom met 92,41% ADD(-S).
Dit werk richt zich op een kritieke uitdaging optredend bij minimaal invasieve
operaties, zoals de precieze plaatsing van instrumenten tijdens rugoperaties. Hier-
mee wordt de algemeen haalbare precisie en veiligheid van dergelijke procedures
verbeterd.

Het onderzoek in dit proefschrift levert aanzienlijke bijdragen aan de voor-
uitgang in computerondersteunde detectie, beeldgeleide chirurgie en medische
beeldsegmentatie, en biedt nieuwe oplossingen voor kritieke uitdagingen in de
medische beeldvorming. Een belangrijk resultaat is de ontwikkeling van een ver-
beterd CADe-systeem voor de detectie van alvleesklierkanker, met gebruikmaking
van secundaire tumorkenmerken die de diagnostische nauwkeurigheid verbete-
ren, vroege detectie mogelijk maken wat cruciaal is voor betere patiëntuitkomsten.
Dit proefschrift introduceert ook innovatieve verbeteringen voor kwantificering
van onzekerheid waarmee de inherente variabiliteit en ambiguı̈teit in medische
beelden worden aangepakt om daarmee de robuustheid van segmentatiemodel-
len in de klinische praktijk te verbeteren. Bovendien worden belangrijke door-
braken in Out-of-Distribution (OOD)-detectie gepresenteerd, met krachtige metho-
den om de betrouwbaarheid van medische beeldanalyse te waarborgen, vooral
bij datagebruik met statistiek buiten de trainingsdistributie van het model, een
veelvoorkomend probleem in klinische omgevingen. Het werk aan 6-DoF pose-
schatting versterkt het proefschrift verder door realtime begeleidingssystemen
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voor instrumenten in röntgenbeelden naar een hoger nauwkeurigheidsniveau te
brengen, wat praktische toepassingen biedt in minimaal invasieve operaties waar
precisie en veiligheid essentieel zijn. Deze bijdragen versnellen de acceptatie van
datageleide hulpmiddelen in de gezondheidszorg, wat leidt tot meer precieze,
betrouwbare en efficiënte medische diagnostiek en interventies.
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1.1 Background
1.1.1 Deep learning in medical image analysis
The rapid advancement of machine learning (ML), particularly Deep Learning
(DL), has catalyzed transformative changes across numerous fields, with medical
imaging standing at the forefront of these innovations. Deep learning, especially
through architectures such as convolutional neural networks (CNNs), has un-
locked unprecedented possibilities for automated image analysis, dramatically
improving the accuracy, speed, and consistency of medical diagnostic processes.
These developments holds an immense promise for medical imaging applications,
where modalities like X-ray, computed tomography (CT), Ultrasound and espe-
cially applications utilizing natural images (RGB) are poised to benefit from the
enhanced precision and efficiency enabled by DL-driven solutions.

Deep learning models excel in capturing complex patterns, making them
highly effective for the intricate and often subtle features present in medical im-
ages. While medical imaging datasets are relatively limited compared to those
in other domains, advancements in data augmentation, transfer learning, and
model optimization have enabled DL models to perform exceptionally well, even
with smaller, highly specialized datasets. These models have been successfully
applied to critical tasks, such as detecting abnormalities, segmenting anatomical
structures, and predicting clinical outcomes from medical scans. In radiology, for
instance, CNNs trained on curated and annotated datasets have shown strong
capabilities in detecting pulmonary nodules on chest X-rays, identifying tumors
in MRI scans, and assessing the severity of conditions on Computed Tomogra-
phy (CT) scans with accuracy levels comparable to expert radiologists [1]. Recent
DL-advancements in RGB-based endoscopy video analysis for early Barrett’s
neoplasia detection, the Computer-Aided Detection (CADe) system showcased
superior performance to endoscopists in detecting neoplasia [2].

In computed tomography (CT) and magnetic resonance imaging (MRI), deep
learning models have played a crucial role in advancing image analysis beyond
the capabilities of conventional image analysis methods. These models have been
instrumental in enhancing tasks such as image segmentation, tumor detection, and
the accurate identification of pathological structures. By automating these com-
plex processes, deep learning algorithms significantly reduce the time required
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for image interpretation, thus improving the efficiency of clinical workflows and
can even bring diagnostic expertise to locations previously not available. More-
over, their ability to provide detailed anatomical insights potentially facilitating
more precise planning of surgeries and therapies, contributing to better patient
outcomes [3].

X-ray imaging remains a fundamental tool in clinical diagnostics due to its
speed, accessibility, and relatively low cost, making it indispensable for detecting
a wide range of conditions, from bone fractures and lung infections to cardiovas-
cular abnormalities. Despite its ubiquity, interpreting X-ray images is inherently
complex, requiring considerable expertise to distinguish subtle anomalies from
normal variations. Deep learning techniques have revolutionized this process, en-
abling the automation of key diagnostic tasks. Beyond diagnostics, X-ray imaging
is increasingly employed in minimally invasive surgeries, where real-time imaging
is critical for procedures such as catheter, cardiac valve and stent placement. Deep
learning further enhances these applications by automating the identification of
anatomical landmarks and providing precise guidance during interventions, re-
ducing both the need for more invasive approaches and recovery times [4]. The
continued integration of deep learning in X-ray imaging, from diagnostics to in-
terventional radiology, is poised to further elevate the quality and efficiency of
patient care.

1.1.2 Advancements of deep learning for enhanced image analysis
The field of deep learning for image analysis has seen remarkable advancements
since the introduction of AlexNet [5] in 2012, which was pivotal in demonstrating
the power of deep convolutional networks by winning the ImageNet [6] chal-
lenge. AlexNet’s success marked a shift from traditional handcrafted features
to data-driven feature learning, combined with advancements in parallelizing
computations with modern1 Graphics Processing Unit (GPU) for training, accel-
erated the growth of the computing technology. Subsequent architectures such
as the ResNet [7] model, with innovations like skip connections, introduced scal-
ing laws which indicate that deeper and larger models equally deliver improved
performance. The evolution continued with vision transformers (ViT) [8], cul-
minating in models like DINOv2[9], which leverage attention mechanisms for
enhanced feature learning over global image contexts, offering superior perfor-
mance in self-supervised learning [10]. Recently, architectures such as SAMv2 [11]
have emerged, focusing on open-set segmentation tasks, blending the strengths
of transformers with convolutional backbones, enabling more robust handling of
diverse and unseen image data. These developments have not only pushed the
boundaries of accuracy and efficiency but also expanded the applicability of deep
learning to more complex and open-ended tasks in image analysis.

Initially, deep learning models were developed primarily for natural image
analysis tasks, such as object recognition and classification. However, these archi-

1Nvidia Corp., CA, USA
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tectures have been successfully adapted for more specialized domains, including
medical imaging. For instance, U-Net [12], originally designed for biomedical im-
age segmentation, has been widely adopted across both medical and non-medical
fields, becoming a staple in tasks such as tumor segmentation [13] and general
semantic segmentation. This adaptability is further enhanced through techniques
like transfer learning [14], where models pretrained on large-scale datasets like
ImageNet [6] are fine-tuned to detect specific patterns in medical images. No-
tably, innovations tailored to medical applications often flow back into general
image analysis, driving new capabilities forward, with examples such as the ear-
lier mentioned U-Net being the backbone in state-of-the-art Diffusion generative
models [15]. This cross-domain influence highlights the reciprocal relationship
between medical and general image analysis, where advancements in one domain
catalyze progress in the other.

Despite the rapid advancements of DL in medical imaging, several critical
challenges should be addressed for these technologies to be fully integrated into
clinical practice. For CADx and CADe (CAD) systems to gain widespread adop-
tion, they need to align more closely with clinical workflows or even even be
integrated into existing medical equipment. This requires not only enhancing the
accuracy of these models, but more critically, ensuring their robustness across
diverse clinical environments and varying user expertise. Medical images often
present ambiguities due to low-contrast changes between anatomical structures,
variable/poor image quality, or rare pathologies, making accurate interpretation
difficult. DL models should be able to handle (part of) these complex cases, particu-
larly in high-stakes applications like tumor detection or trauma assessment, where
errors can have significant consequences. Therefore, continued advancements in
model architectures, training techniques, and more comprehensive datasets are
essential to ensure deep learning systems that can meet or exceed the performance
of human experts in all clinical scenarios.

In addition to diagnostic accuracy, there is a need for novel deep learning solu-
tions that extend beyond diagnosis. Predicting clinical outcomes, such as patient
prognosis or treatment response, remains an underexplored area with substantial
potential for positive impact. Similarly, DL could play a crucial role in real-time
decision-making support during surgeries, providing guidance to surgeons by
identifying critical structures and aiding in instrument maneuvering. However,
the reliability of DL models remains a major hurdle, especially when confronted
with Out-of-Distribution (OOD) data, such as rare diseases or unexpected vari-
ations that differ from the data used in training. To ensure trustworthiness in
clinical settings, models should be developed with robust mechanisms to detect
and handle OOD scenarios, and safeguard against adversarial errors. Address-
ing these challenges will be crucial for the broader adoption of deep learning in
clinical practice, paving the way for more reliable medical applications.

3
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1.2 Computer-aided detection in medical imaging
Computer-aided detection (CADe) systems in medical imaging represent an evolv-
ing field that integrates advanced computational techniques with image analysis
to enhance diagnostic processes across a variety of medical specialties. CAD sys-
tems are designed to assist healthcare professionals by increasing the accuracy
and efficiency of diagnoses through automated detection and characterization of
visual/anatomical abnormalities and diseases in medical images.

One foundational study by Giger and Suzuki [16] outlines the significant role
CAD systems play in providing a “second opinion” in diagnostic imaging, en-
hancing the ability of medical professionals to detect subtle or overlooked features
in images. Roth et al. [17] further discuss improvements in CAD through con-
volutional neural networks (CNNs), which provide high sensitivity in detecting
anomalies (e.g. cancer) across various imaging modalities, such as CT scans and
MRIs. Their study highlights the application of deep learning techniques to en-
hance detection accuracy and reduce false positives. Moreover, a comprehensive
review by Chen et al. [18] and Li et al. [19] detail various Computer-Aided Diag-
nosis (CADx) methods that extend beyond detection to include the probabilistic
assessment and classification of detected lesions, thereby aiding in therapeutic
decisions. Their study underscores the integration of pattern recognition and ML
as pivotal in evolving CAD systems.

In clinical settings, CAD systems have shown substantial benefits in areas such
as mammography[20], lung nodule detection [21], early Barrett’s esophagus [2]
and the identification of pancreatic cancer [22]. The potential of CAD systems
continues to expand with advancements in machine learning, specifically deep
learning. Nagaraj et al. [23] predict a shift towards fully automated diagnostic
systems that could operate with minimal human oversight. The integration of
such deep learning techniques suggests enhanced capabilities of CAD systems,
making them more robust in handling a broad range of medical imaging tasks.
The evolution of CAD systems has also been marked by the increasing use of
hybrid models that combine multiple diagnostic parameters and imaging modali-
ties, leading to more comprehensive and accurate systems. The development of
such systems is detailed in the works of Shin et al. [24], who have explored the
integration of various deep learning models to optimize the performance of CAD
systems across different stages of disease detection and evaluation.

1.2.1 Pancreatic cancer
1.2.1.A Background on the pancreas
The pancreas is a vital organ located in the abdomen, playing a crucial role in
the digestion of foods and regulation of blood sugar levels. It is approximately
15 cm long and is located across the back of the abdomen, behind the stomach. The
pancreas is divided into three sections: the head, the body, and the tail. It produces
digestive enzymes that help break down fats, proteins, and carbohydrates, and it
secretes hormones such as insulin and glucagon into the bloodstream to help the
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Figure 1.1 Diagram showing the anatomy of the pancreas. Diagram obtained from
https://www.pancreaticcancer.org.uk/

body use or store the glucose it derives from food.
Pancreatic cancer is a challenging and aggressive disease and arises when

abnormal cells within the pancreas grow uncontrollably and form tumors. Un-
fortunately, this type of cancer is often diagnosed at later stages, since early-stage
pancreatic cancer rarely causes symptoms. This late diagnosis confirms its rep-
utation as one of the most lethal types of cancer. Among the various forms of
pancreatic cancer, Pancreatic Ductal Adenocarcinoma (PDAC) is the most com-
mon type, accounting for about 90% of the cases. This malignancy originates in
the lining of the pancreatic ducts through which digestive enzymes flow.

The risk factors for developing pancreatic cancer include age (most patients
are over 45), smoking, chronic pancreatitis, diabetes, family history of the disease,
and certain genetic disorders. Treatment options vary depending on the stage
of the disease and may include surgery, chemotherapy, radiation therapy, or a
combination of these treatments aimed at managing symptoms and prolonging
life.

1.2.1.B Pancreatic ductal adenocarcinoma (PDAC)
Advanced machine learning methodologies, specifically deep CNNs, have demon-
strated exceptional capabilities in processing vast datasets of medical images.
These networks are adept at detecting small details and even sometimes indis-
cernible alterations in pancreatic tissues. This enhanced detection capability is
pivotal in the early identification and management of PDAC.

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of
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cancer related deaths worldwide, with a dismal prognosis and an overall 5-year
survival rate of only 9% [25], [26]. Although pancreatic cancer treatment has im-
proved over the past years through centralization and optimization of treatment
strategies, overall survival has not significantly improved [27], [28]. Pancreatic
cancer often causes only a few non-specific symptoms before it develops into
advanced stages of disease. The most commonly presented symptoms in patients
with PDAC are pain, jaundice, steatorrhea, and weight loss [29]. As a result, more
than 75% of the patients present with irresectable or metastatic disease [30], [31].
Therefore, early detection of pancreatic tumors holds significant promise by en-
abling potential curative treatment [32]. Subsequently, characterization of pancre-
atic tumors is important in order to tailor specific treatments, determine surgical
resectability, and identify each patient for curative treatment as well as possible.

Radiological imaging modalities such as computed tomography (CT) and mag-
netic resonance imaging (MRI) are key in providing information on the presence of
disease and the relation to vessels surrounding the pancreas, which determines the
resectability [33]. Standardized resectability criteria are used to tailor the need for
neoadjuvant therapy and to select patients for a minimally invasive approach [34]–
[36]. However, determining resectability, especially after neoadjuvant therapy, is
extremely difficult and mostly inaccurate at this time [37], [38]. Tumor regression
after neoadjuvant treatment is rarely visible on CT, and the extent of vascular
involvement tends to be overestimated [39]. Artificial intelligence offers a unique
opportunity to improve the early detection and characterization of pancreatic can-
cer. Over the past decades, deep learning-based algorithms have been developed
that can provide pixel-level segmentation maps of relevant anatomy [40], [41].

1.2.2 Guidance during minimally invasive surgeries
Minimally invasive surgeries (MIS) have transformed the landscape of surgical
procedures by reducing patient recovery time, minimizing surgical trauma, and
improving overall outcomes. However, these procedures demand a high level
of precision, often requiring real-time guidance to navigate complex anatomical
structures and avoid critical areas. Image-guided intervention and image-guided
surgery can both particularly from image-based deep learning methods, where the
latter has emerged as a powerful tool in enhancing the accuracy and safety of these
surgeries. This section explores the recent advancements in image-based deep
learning methods that support clinicians during minimally invasive procedures
in radiology.

1.2.2.A Real-time surgical navigation
In the context of minimally invasive surgeries, image-based deep learning mod-
els are increasingly being used to enhance surgical navigation[42]. These models
can process intraoperative imaging data, such as ultrasound, endoscopic or flu-
oroscopy images in real-time, providing surgeons with precise guidance of the
instrument utilized during the surgery.

Initially, CNNs have been effectively utilized to segment organs, tumors, and
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other critical structures in real-time, aiding surgeons in navigating through these
regions with precision. Shvets et al. [43] demonstrated the use of CNNs for real-
time instrument segmentation in endoscopic images, thereby improving the sur-
geon’s ability to identify and track surgical tools during the procedure. This capa-
bility reduces the risk of accidental damage to tissues and enhances the surgeon’s
situational awareness, thereby improving surgical outcomes.

1.2.2.B Augmented reality and deep learning: enhancing surgical precision
One of the most promising applications of deep learning in MIS is the integration
of Augmented Reality (AR) with real-time imaging data [42]. AR, powered by
deep learning algorithms, overlays critical information, such as anatomical land-
marks, blood vessels and nerves, potential risk zones or surgical tool guidance
directly onto the surgeon’s view [44]. This technology provides an intuitive, visual
guide that enhances the surgeon’s ability to perform complex tasks with higher
precision.

For instance, deep learning models can predict the 3D structure of organs
from 2D imaging data and project this information onto the surgical field. A
recent study by Ramalhinho et al. [45] explored the use of deep learning for AR in
liver surgeries, where the models provided real-time guidance by superimposing
the liver’s vascular structure onto the surgeon’s view. This approach not only
enhances the accuracy of the surgery, but also reduces the cognitive load on the
surgeon by providing clear and continuous visual guidance.

A recent study by Malhotra et al. [46] reviews the application of augmented
reality (AR) in surgical navigation, emphasizing its integration with deep learn-
ing technologies across various surgical fields such as neurosurgery, orthopedic
surgery, and laparoscopic surgery. The findings highlight that AR-based systems
enhance the precision and safety of surgical procedures by providing real-time
3D visualization and guidance, which are crucial for minimally invasive surg-
eries. However, the study notes that despite significant progress, the widespread
adoption of AR in surgery encounters challenges, particularly in accuracy and
validation, necessitating further research and development to fully realize its po-
tential.

1.3 Modeling image data distributions
The deep learning-based methods utilized in CAD application, have proven highly
effective at extracting complex patterns from image data by learning represen-
tations that either implicitly or explicitly capture the underlying distribution of
the data they are trained on. Through training on large datasets, these models
are optimized to generalize to new data and unseen test data. Implicitly, models
like CNNs encode the statistical properties of the data in their learned weights,
whereas explicit approaches, such as generative models, aim to model the full
distribution of the input space. This capability to encode the intricacies of the data
distribution is a key reason for the success of deep learning in fields like medical
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image analysis, where understanding subtle patterns in images is crucial for tasks
such as diagnosis or segmentation.

One of the significant advantages of learning data distributions is the ability
to leverage these representations for Out-of-Distribution (OOD) detection and
uncertainty modeling. By understanding what constitutes the normal data distri-
bution, a model can be more effective at identifying inputs that deviate from this
distribution, signaling potential anomalies or unexpected inputs, which is critical
in medical imaging scenarios. Furthermore, uncertainty modeling can quantify
the model’s confidence in its predictions, providing an additional layer of relia-
bility, especially when dealing with edge cases or rare conditions. This becomes
invaluable in healthcare, where accurate and reliable decision-making can impact
patient outcomes.

Deep generative models such as Variational Autoencoders (VAEs) [47], Gener-
ative Adversarial Networks (GANs) [48], Diffusion Models [15] and Normalizing
Flows (NFs) [49] have revolutionized the ability to model image data distributions.
These methods can capture the underlying distribution of complex image data by
learning to generate images that are indistinguishable from real data. VAEs, for
instance, encode images into a latent space that represents the data distribution
and can be used to generate new, realistic images by sampling from this space.
GANs, on the other hand, utilize a generator and a discriminator to learn and
model data distributions through adversarial training.

In medical imaging, these models have been used to enhance tasks such as
image reconstruction, denoising, and even generating synthetic data for train-
ing purposes. A well-modeled distribution can capture the nuances of medical
imaging data, which is often characterized by high variability and subtle features
that are crucial for accurate diagnosis. For instance, Chen et al. [50] demonstrated
how GANs could model the distribution of MRI images for tasks such as image
enhancement and artifact removal, thereby improving the quality and accuracy
of subsequent analyses.

Beyond modeling the data distribution, these models can be integrated with
task-specific models, such as segmentation networks, to express uncertainty. In ra-
diological applications, understanding the uncertainty of a model’s predictions is
critical, especially in scenarios where the consequences of incorrect predictions can
be severe. By leveraging probabilistic deep learning approaches, such as Bayesian
neural networks or ensemble methods, it is possible to quantify uncertainty in
segmentation tasks. For instance, a model trained to segment tumors in radiologi-
cal images can use the underlying data distribution to identify regions where the
model’s predictions are uncertain. This is particularly useful in identifying bor-
derline cases where the model is unsure if a region is cancerous or not, allowing
radiologists to review these areas with greater scrutiny. Early work by Kendall and
Gal [51] explored how Bayesian deep learning models could provide uncertainty
estimates in segmentation tasks, leading to more robust and interpretable models
in medical imaging.

Modeling the complete data distribution also offers a powerful mechanism
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for out-of-distribution (OOD) detection. In radiology, OOD detection is crucial
for identifying cases where the input data does not conform to the distribution
the model was trained on, which may indicate an unusual or previously unseen
pathology. By evaluating whether a new sample comes from the learned distribu-
tion, it is possible to flag potentially anomalous cases for further investigation. For
example, in a model trained on a specific type of imaging modality, an OOD de-
tector can identify when an image is from a different modality or contains features
that are not well-represented in the training data. This capability is particularly
important in clinical settings, where reliance on a model’s output without rec-
ognizing its limitations could lead to diagnostic errors. The work by Hendrycks
and Gimpel [52] on simple OOD detection methods using softmax scores, and
more advanced methods like deep generative models, illustrates how these tech-
niques can be effectively employed in medical imaging to enhance the safety and
reliability of Artificial Intelligence (AI) systems in analysis methods.

1.4 Challenges
In the previous sections, we briefly explored the significant advancements that
deep learning has brought to medical image analysis, particularly in enhancing
the capabilities of computer-aided diagnosis (CAD) systems. These innovations
have led to more accurate, efficient, and automated diagnostic tools, improving
patient outcomes and streamlining clinical workflows. However, despite these
achievements, several challenges persist in fully realizing the potential of deep
learning in medical imaging, but also enable novel treatment strategies featuring
enhanced background information and insights. This section will discuss some of
these key challenges, outlining the technical aspects to be addressed in this thesis.

1.4.1 Pancreatic cancer treatment
1.4.1.A Accurate PDAC detection
Deep learning has emerged as a powerful tool in the detection and treatment
of pancreatic cancer, particularly in identifying Pancreatic Ductal Adenocarci-
noma (PDAC). However, the effectiveness of deep learning models heavily de-
pends on the availability of large, annotated datasets. These models excel in de-
tecting fine-grained details within medical images, but their performance can be
significantly hampered in data-scarce environments.

Pancreatic cancer exhibits secondary, tumor-indicative features that can indi-
cate tumor well before it is clearly visible in CT volumes. In this thesis, the specific
challenge is to incorporate such domain-specific knowledge of PDAC into these
models to enhance their detection capabilities by allowing the algorithms to focus
on these clinically relevant features that may not be apparent in a generic training
dataset. This feature integration can lead to more accurate and earlier detection,
ultimately improving patient outcomes.
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1.4.1.B Segmentation uncertainty quantification
A critical challenge that remains unresolved is the inherent ambiguity in segment-
ing tumors, i.e. defining tumor borders precisely. This ambiguity originates from
the inter- and intra-observer variability of the clinicians’ uncertainty when seg-
menting the tumor, which is partly introduced by the limited resolution of the
CT imaging process and the low contrast between the tumor and surrounding
anatomy.

To describe the ambiguity in the data analysis process by means of statistical
tools and models is a key challenge. This challenge occurs, since the current un-
certainty models are limited in capacity and do not match well with the medical
imaging problems considered. To address this, it is crucial to develop models
capable of effectively describing uncertainty and providing a means of quantifi-
cation. This would allow the models to express their confidence levels in predic-
tions, especially when faced with ambiguous tumor boundaries. If the ambiguous
boundaries of a structure can be accurately modelled, the overall segmentation of
structure will also become more accurate.

1.4.2 Out-of-Distribution detection
Out-of-distribution (OOD) detection in medical image analysis has been predom-
inantly used in two manners. (1) Semantic OOD refers to detecting anomalous
samples (e.g. rare tumor samples) when trained on a healthy domain. (2) Covari-
ate OOD detection ensures the safe deployment of secondary CAD systems in
dynamic environments to filter OOD samples or to detect faulty imaging equip-
ment. Figure 1.2 depicts the high-level concepts of modeling a distribution from
observed samples. New samples are then evaluated under the modeled distri-
butions to determine the likelihood they originate from the same underlying
distribution.

1.4.2.A Semantic OOD detection
Detecting anomalous samples as semantically OOD is valuable. However, ex-
isting approaches often focus on the wrong aspects of the data, such as high-
frequency features, which may not be relevant for distinguishing between In-
Distribution (ID) and OOD samples.

The key challenge is to identify and model the components of the training
distribution (In-Distribution set) that provide most information for determin-
ing if a new sample is OOD. Generative models, an effective approach to OOD
detection, are limited in modeling capacity. To compensate for this limitation,
key-informative components to the OOD detection problem can be identified and
captured instead. For instance, in the context of detecting melanoma, emphasizing
semantic context and low-frequency image components can enhance the detection
of semantic OOD samples.
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Figure 1.2 Conceptual diagram of modeling a distribution and utilizing the modeled distribution to
detect OOD samples or estimate uncertainty. The arrows represent a notion of increasing uncer-
tainty.

1.4.2.B Covariate OOD detection
Existing OOD detection methods largely overlook the issue of covariate shift,
where the distribution of high-level features changes over time or between dif-
ferent environments, while still offering consistent low-level features. This is par-
ticularly troublesome in medical imaging, because slight variations in imaging
protocols or patient demographics can lead to significant shifts in data distribution.
The key challenge is to explicitly define covariate shift, particularly through novel
approaches, which can contribute to the robustness and reliability of imaging
systems in clinical settings.

1.4.3 Accurate and real-time pose estimation
Accurate and real-time pose estimation is a well-established task in RGB images,
with current methods achieving high levels of accuracy across various applica-
tions. However, these advancements have not yet been effectively translated to
X-ray imaging, which presents specific challenges resulting from the complexity
and variability of the imaging environment. One of the key challenges in X-ray
pose estimation is to account for variable imaging geometries, such as changing
source-image distances, field-of-view adjustments, and detector variations, which
all have a significant impact on the accuracy of pose predictions.

1.4.3.A General purpose 6-DoF pose estimation
The key challenge is to develop pose estimation techniques to accommodate the
aforementioned variable geometries inherent in X-ray imaging. The aim is to
develop a method that ensures reliable and accurate pose estimation, regardless
of changes in the acquisition setup. Such advancement would enhance the pre-
cision and safety of image-guided surgical procedures, particularly in complex
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interventions such as spinal surgeries where accurate instrument placement is
critical.

1.5 Problem statement and research questions
This section defines a problem statement based on the observations from this
chapter and formulates specific research questions following from this problem
definition.

1.5.1 Problem statement
This thesis addresses four problems. The first is the exploitation of incorporating
domain-specific knowledge in PDAC detection models. The second involves mod-
eling of ambiguity (uncertainty) in the data to improve the accuracy in delineating
cancerous lesions. The third problem involves the accurate detection of semantic
and covariate Out-of-Distribution data in dynamic clinical environments. Finally,
the fourth problem entails developing an advanced instrument pose estimation
technique capable of real-time and accurate pose predictions, particularly capable
of handling variable imaging geometries.

1.5.2 Research questions
From the above problem statement, a number of specific research questions are
derived, which are formulated below.

RQ1: Incorporating domain-specific knowledge in PDAC detection
The accurate detection of pancreatic ductal adenocarcinoma (PDAC) remains a
significant challenge in the field of medical imaging due to its subtle early-stage
presentation and complex anatomical surroundings. Recent advances in computer-
aided detection (CADe) systems, leveraging deep learning techniques, offer the
potential to significantly enhance the accuracy of PDAC detection. Based on these
observations, this research aims to explore state-of-the-art techniques for pancre-
atic CADe systems, focusing on the integration of secondary, PDAC-indicative
features (the domain knowledge) that can improve detection performance. This
investigation further continues by addressing the components critical for an end-
to-end PDAC CADe system, from the acquisition of CT scans to the accurate
assessment of tumor presence, aiming to provide a comprehensive detection sys-
tem. Bearing these aspects in mind, this research raises the following questions.

• RQ1a: Can we effectively include PDAC-indicative features into a PDAC CADe
system to enhance the detection performance?

• RQ1b: What is a possible setup for a complete end-to-end pancreatic CADe system?

RQ2: Accurate ambiguity modeling for improved segmentation
Accurately segmenting anatomical structures in medical imaging is crucial for
diagnosis and treatment planning, especially in ambiguous cases where ground-
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truth data are uncertain. It is expected that the quantification of aleatoric uncer-
tainty in medical image segmentation can be improved by examining the use
of advanced probabilistic models, such as Normalizing Flows integrated with
the Probabilistic U-Net (PU-Net). Furthermore, by extending these uncertainty
models to 3D processing, the consistency, efficiency, and accuracy of uncertainty
quantification can be enhanced. This provides more reliable segmentation maps
that can be used confidently in clinical practice. These views raise the following
research questions.

• RQ2a: How can we model ambiguous ground-truths (aleatoric uncertainty) to
improve the accuracy of segmentation maps?

• RQ2b: Does aleatoric uncertainty modeling in 3D improve the accuracy, consis-
tency and execution speed?

RQ3: Exploring uncertainty modeling in PDAC resectability prediction
The prediction of the resectability of pancreatic ductal adenocarcinoma (PDAC) is
crucial for determining appropriate treatment strategies, yet remains a complex
task due to the intricate relationship between the tumor and surrounding vascula-
ture. This research aims to develop a segmentation-based approach to accurately
delineate PDAC and relevant vascular structures, facilitating the automated deter-
mination of tumor resectability. Furthermore, the study focuses on exploring the
role of model uncertainty in making clinically relevant resectability predictions,
ultimately contributing to more informed and precise surgical planning. Through
this investigation, the following research questions are raised.

• RQ3a: How accurate should a PDAC and relevant vasculature segmentation algo-
rithm be to obtain a feasible automated prediction of resectability?

• RQ3b: Is the integration of model uncertainty into prediction models applicable and
sufficiently useful for resectability prediction?

RQ4: Density modeling for Out-of-Distribution detection
Out-of-distribution (OOD) detection is a critical aspect of ensuring the reliability
of CAD systems in medical imaging, or detecting rare occurrences of complex
diseases such as malignant melanoma. Density modeling techniques, such as
wavelet-based Normalizing Flows, can more accurately model the wavelet details
of the In-Distribution (ID) melanoma to improve the detection of OOD samples
in skin melanoma images. Covariate shifts is known to adversely affect image
quality and as a result, the image analysis methods using these images. To detect
these covariate shifts, unsupervised generative models are strong candidates with
their ability for OOD detection. However, modeling the complete data distribution
may be difficult and it is expected that when explicitly modeling high-frequency
heteroscedastic components of the data distribution, these generative model could
be more effective in detecting and quantifying covariate shifts. Bearing these
aspects in mind, the following research questions are formulated.
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• RQ4a: Can generative models effectively detect and quantify semantic and/or co-
variate shifts in natural and X-ray images?

• RQ4b: How can high-frequency heteroscedastic image components be explicitly
modeled and does this lead to improved OOD covariate shift detection performance?

• RQ4c: Do the decomposed frequency components of an image contain sufficient
information to improve OOD detection performance?

RQ5: Instrument Pose Estimation in X-ray
Accurate and efficient pose estimation of surgical instruments during X-ray image-
guided interventions is critical for the success of the intervention. This research
seeks to establish a general-purpose method for 6-degrees of freedom (6-DoF) pose
estimation, addressing the challenges of variable imaging geometries inherent
in X-ray procedures. By incorporating X-ray imaging geometry into the pose
estimation process, this study aims to develop a model that enhances the accuracy
and performance of pose predictions. Integrating these mentioned components
raises the following research questions.

• RQ5a: How to develop a general-purpose method that is both accurate and fast for
6-DoF pose estimation?

• RQ5b: How can X-ray data and the imaging geometry be effectively incorporated
into the 6-DoF pose estimation process, and what impact does this have on the model
performance?

1.6 Contributions
This section provides an overview of the scientific contributions presented in this
thesis. These contributions can be linked to four categories, which are elaborated
below.

1.6.1 Contributions to pancreatic cancer treatment
This research contributes to the early detection and treatment via resectability pre-
diction of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal forms
of cancer. A deep residual 3D U-Net that integrates secondary, tumor-indicative
features is developed to segment the PDAC from contrast-enhanced CT scans.
These secondary features, which are identified and utilized by expert radiologists
from the CT data, are crucial in identifying PDAC at an earlier stage when surgical
resection is still viable. This feature integration enhances the detection capabilities
beyond the level that is achieved with primary tumor detection alone. A complete
end-to-end PDAC detection processing chain is established, which realizes a high
PDAC detection performance of 0.99 Area Under Curve of the Receiver Operating
Characteristic (AUROC) on an internal test set and a perfect sensitivity on a public
benchmark.
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In addition to detection, this research is one of the first investigations into to
the critical task of predicting resectability of PDAC. Accurate resectability pre-
diction is essential for determining whether a patient can undergo surgery with
a curative intent. The study introduces a novel segmentation-based approach,
utilizing multiple nnU-Nets, 3D U-Nets and Probabilistic 3D U-Nets (9 models in
total). This overall approach does not only identify the tumor, but also delineates
relevant vascular structures that are critical for surgical planning. From the gen-
erated segmentation maps of the tumor and vasculature, an automated “angle of
involvement” is derived that estimates the extent of the tumor growth. This angle
aligns with the established clinical practice on pancreatic cancer treatment, mak-
ing the model output suitable for clinical use. By integrating model uncertainty
into the segmentation predictions, the research further enhances the reliability of
the resectability assessments, providing clinicians with valuable information that
can guide well-funded treatment decisions.

This multi-stage approach encompasses both early detection and resectability
prediction. It offers a comprehensive solution that can lead to more personal-
ized and effective treatment strategies for pancreatic cancer patients, ultimately
improving survival rates and quality of life.

1.6.2 Contributions to improving quantification of uncertainty
In the realm of medical image segmentation, the conducted research advances the
state-of-the-art methods in uncertainty quantification. This is an important com-
ponent for accurate segmentation under ambiguous ground truths and to ensure
the reliability of automated diagnostic systems. Early methods for quantifying
uncertainty often rely on mapping the uncertainty through Gaussian distributions,
which may not fully capture the complexity and variability inherently occurring
in medical imaging data. This research introduces the integration of Normaliz-
ing Flows (NFs) into the Probabilistic U-Net (PU-Net), allowing for more flexible
and expressive posterior distributions. This combination enables a more accurate
representation of aleatoric uncertainty (14% improvement in GED and 13% in
Hungarian IoU), which is the inherent uncertainty in the data itself, particularly
when dealing with ambiguous ground truths.

Moreover, the research extends these advancements by applying the aforemen-
tioned enhanced uncertainty quantification methods to three-dimensional (3D)
medical imaging data. This extension is crucial as many clinical applications, such
as volumetric tumor segmentation and 3D anatomical modeling, require the anal-
ysis of 3D datasets. By developing a 3D probabilistic U-Net with NFs that support
3D processing, the research addresses the challenges of maintaining consistency,
efficiency, and accuracy in multi-dimensional segmentation tasks. This 3D ex-
tension is validated on 3D lung nodule segmentation and aleatoric uncertainty
quantification. Using both quantitative (accuracy and efficiency) and qualitative
(consistency) evaluations the method efficacy is proved. By advancing these tech-
niques, the research lays a foundation for robust uncertainty quantification in
medical imaging that can better adapt to the real demands of clinical practice.
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1.6.3 Contributions to methodologies for Out-of-Distribution detection
Out-of-Distribution (OOD) detection is a crucial aspect of computer vision, as it
can detect novel semantic objects, such as tumors in a healthy cohort. In addition,
it can be employed as a safe-guard to detect statistical deviations in images that
could adversely affect the image quality and image analysis models using them.
This research makes significant strides in this field by utilizing generative models
and an image decomposition process that reveal the valuable components for
either (1) semantic or (2) covariate OOD detection.

Specifically, (1) wavelet-based NFs (Wavelet Flow) are employed to model the
wavelet detail coefficients of benign melanoma, showcasing clear deviations in the
low-frequency components when testing for malignant melanoma. This approach
realizes a 5-% increase in AUROC compared to the baselines, whilst reducing
model size to only 1.25 M parameters. This work demonstrates that by focusing
on the most relevant image components, a novel OOD detection model is created
that significantly improves semantic OOD detection performance.

Similarly, to detect (2) covariate shift, this research introduces CovariateFlow,
a novel methodology that applies conditional Normalizing Flows to explicitly
model the high-frequency heteroscedastic components of images. The decompo-
sition is obtained through a Gaussian filter and the conditional relation between
the high-frequency and low-frequency components are modeled with a series of
coupling flow steps. Additionally, this research introduces the Normalized Score
Distance (NSD) as a unified metric that combines typicality and log-likelihood for
more effective OOD detection in NFs. The culmination of these improvements
enable accurate covariate shift detection across a wide range of covariate factors
and different datasets. The method is also applied to covariate shift detection in
X-ray images, in which it exhibits a strong performance compared to the baseline
models (implemented generative models).

This study is one of the first to explore covariate shift to this extent, thoroughly
comparing various generative models on both natural and X-ray images. Besides
this novelty, these contributions are particularly valuable in clinical environments,
where the ability to detect distribution shifts—whether due to changes in imaging
protocols, patient populations, or even equipment malfunctions—is critical for
maintaining the accuracy and reliability of diagnostic systems.

1.6.4 Contributions to methodologies for object 6-DoF pose estimation
State-of-the-art minimally invasive surgeries can utilize pose estimation systems
in guiding surgical instruments during procedures. This research contributes to
this field by developing a general-purpose method, called YOLOv5-6D, for 6-
degrees-of-freedom (6-DoF) pose estimation, that fully supports the challenges of
X-ray imaging. The proposed method predicts 2D keypoints of the projected 3D
bounding box of the object. This sets the method apart from direct pose estimation
approaches, since the camera model can freely change at execution time and the
pose can still accurately be computed with standard Perspective-n-Point (PnP)
methods that incorporate the per-frame camera geometry.
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Moreover, the research has practical implications for enhancing the safety
and efficacy of image-guided procedures, particularly in complex surgeries such
as spinal operations, where precise instrument placement is critical. The meth-
ods is extensively validated on three benchmarks: (1) a public RGB benchmark
(LINEMOD) consisting of every-day objects, (2) an X-ray test cube confirming the
effective transition to the X-ray domain and (3) a spinal screw trained on clear
images and tested on more complex X-ray images with a human spine phantom.
The obtained accuracy (96.84% ADD(-S)), superior inference speed (41.88 FPS) and
generalization ability of the proposed YOLOv5-6D models across these diverse
datasets proves its efficacy.

By developing a methodology that can adapt to different and varying acqui-
sition geometries, the research ensures that the pose estimation model remains
accurate across a wide range of clinical scenarios. This adaptability is key to the
generalization of the method and its potential for widespread application in vari-
ous medical imaging contexts.

1.7 Thesis outline and scientific background
This chapter sets the stage for the thesis by providing a comprehensive overview
of the problem domain, its significance, and the specific challenges addressed. The
thesis layout is depicted in Figure 1.3. After the generic introduction, the thesis
starts with the background section, which introduces the reader to the context
of the research on enhancing computer vision methods for cancer detection and
precision guidance in medical imaging. The subsequent chapters delve into the
prominent role of deep learning in medical image analysis and Computer-aided
detection (CADe) in medical imaging, particularly focusing on Pancreatic duc-
tal adenocarcinoma (PDAC). The research is then dedicated to a more generic
problem on modeling image data distributions, and explores the statistical and
computational methods used to model medical images for further analysis e.g.
OOD detection. The last technical chapter discusses computer-aided guidance
during minimally invasive surgeries and the integration of learning-based meth-
ods in surgical procedures to enhance precision and outcomes. The last chapter
concludes the research. The following paragraphs summarize the results and
scientific background of the individual chapters.

Chapter 2 introduces on the recent advancements in deep learning technolo-
gies applied to medical image analysis. It starts with an introduction to Con-
volutional Neural Networks (CNNs) in medical imaging, outlining their role in
enhancing image interpretation. Key Convolutional Neural Network (CNN) ar-
chitectures are briefly outlined, including those for image classification, image
segmentation, object detection, and pose estimation, highlighting their applica-
tions and performances in medical imaging. The chapter then discusses generative
models, starting with Variational AutoEncoders (VAEs), covering their theoretical
foundations and practical implementations for non-linear latent variable models.
Normalizing Flows are introduced as a method for data modeling through prob-
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Figure 1.3 Schematic layout of the thesis.

ability content preservation and enabling image generation and OOD detection
capabilities. The final sections address uncertainty in deep learning, differentiat-
ing between deterministic and distributional methods, and exploring uncertainty
disentanglement to improve model reliability and interpretation in medical appli-
cations.

Chapter 3 is dedicated to the application of computer-aided detection (CAD)
in diagnosing PDAC. It begins with detecting pancreatic cancer, explaining the
clinical significance and the impact of deep-learning methods on early detection.
Previous work in PDAC detection is summarized to overview existing literature.
The chapter then introduces a novel approach for PDAC detection that utilizes
clinically-relevant secondary features. Further sections discuss the automated seg-
mentation of the external and clinically-relevant features, focusing on multi-stage
segmentation approaches for pancreas and bile duct segmentation. The develop-
ment and evaluation of a comprehensive framework for pancreatic head cancer
detection and localization on CT is then presented as a novel end-to-end approach
(yielding a score of 99% AUROC in PDAC detection). The chapter concludes with
a discussion of challenges and future directions in PDAC Detection.

The review on PDAC detection literature was published in the Journal on
Clinical Medicine [22]. The proposed approach to PDAC detecting incorporating
clinical features was presented at the MICCAI 2022 conference [53] and the method
for obtaining these clinical features at SPIE Medical Imaging 2023 conference [54].
Finally, the complete end-to-end PDAC detection was presented in the Cancers
journal [55].

Chapter 4 introduces uncertainty quantification in medical image segmen-
tation and presents a review of existing methods for quantifying uncertainties
in image segmentation, introducing Probabilistic U-Net (PU-Net) and its limita-
tions. The chapter then builds on this model to introduce a novel approach for
improving aleatoric uncertainty quantification using Normalizing Flows. This
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improved PU-Net realizes an increase of 14% increase in a generalized energy
distance and 13% in Hungarian IoU over the baseline. Further sections extend
the framework to probabilistic 3D segmentation for aleatoric uncertainty quan-
tification, that improves the accuracy, efficiency and consistency of uncertainty
presentation over 2D approaches. The 3D approach is also a step closer to the
practical clinical application of these uncertainty models.

The improved PU-Net was published at the MICCAI 2021 UNSURE work-
shop [56] and its extension to 3D at the SPIE Medical Imaging 2023 conference [57].

Chapter 5 focuses on predicting the resectability of pancreatic tumors, defined
by the degree of involvement with surrounding anatomy. Building on Chapter 3
and Chapter 4, tumor detection in the CT scan is covered and a localized segmen-
tation model capable of capturing the uncertainty in the relevant anatomy and
tumor is developed. In this first of its kind exploration, a deep learning-based
framework is utilized to automatically assess tumor-vessel involvement, which is
essential for determining tumor resectability. It is shown that the best performing
model detects involvement with a 88% sensitivity and a 86% specificity.

This research was presented at the International Conference of Computer Vi-
sion (ICCV) in 2023 at the CVAMD workshop [58].

Chapter 6 addresses the challenge of detecting Out-of-Distribution (OOD)
data. Efficient OOD Detection with wavelet-based Normalizing Flows is intro-
duced as a novel approach, followed by a validation of its application to melanoma
detection yielding a 5% improvement in AUROC over the baseline. Subsequent
sections delve into generative models for OOD covariate Shift detection, introduc-
ing concepts like covariate shift and typicality. The chapter presents Covariate-
Flow, an approach to OOD covariate shift detection, including definitions, model
design, and experimental validation. The model achieves an average AUROC of
75% in detecting covariate shift of all degradation types in natural images and
93% in the X-ray setting.

The semantic OOD detection for early melanoma detection was published at
the MICCAI 2022 conference [59] and the CovariateFlow model at the European
Conference on Computer Vision (ECCV) 2024, Uncertainty in Computer Vision
workshop [60].

Chapter 7 discusses the development of a general-purpose technique for 6-
degrees of freedom pose estimation of instruments in medical imaging. The pro-
posed YOLOv5-6D pose architecture achieves accurate and fast 6-DoF pose esti-
mation, while generalizing across different and varying acquisition geometries
and image complexities. This approach is tested for object pose estimation in RGB
images (96.84% average distance difference (ADD) symmetric (-S)), test objects
in X-ray imaging (99.27% ADD(-S)) and finally bone-screw pose estimation for
spinal surgeries in X-ray image-guided interventions (92.41% ADD(-S)).

The initial concept of the chapter was published at the SPIE Medical Imag-
ing 2022 conference [61] and the final YOLOv5-6D model in the IEEE Transactions
on Image Processing (TIP) in 2024 [62].
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Chapter 8, summarizes the key findings of the thesis, discussing the results
of individual chapters and the corresponding research questions. The chapter
concludes with a brief future outlook and research challenges.

20



C
ha

pt
er

2

C
ha

pt
er 2 Recent advancements in

DL-based image analysis

This chapter is added for completeness and provides the necessary technical back-
ground information and a brief introduction to the deep learning-based image
analysis algorithms applied in this thesis. Depending on the background of the
reader, some sections of the chapter may be skipped for reading.

A simple guide is as follows. Chapter 3 and Chapter 5 on the localization and
analysis of PDAC, utilize the information on segmentation architectures in Sec-
tion 2.1. Chapter 4 on segmentation uncertainty largely builds on the information
on generative models discussed in Section 2.2 and the uncertainty quantification
techniques in Section 2.3. Chapter 6 on OOD detection extends the generative
modeling techniques introduced in Section 2.2. Finally, Chapter 7 presents a 6-DoF
pose estimation model and is based on the details from Section 2.1.4.

2.1 Convolutional neural networks in medical imaging
Convolutional Neural Networks (CNNs) have become a cornerstone in the field
of medical image analysis. These networks provide tools for image classification,
segmentation, and object detection, each playing a crucial role in enhancing diag-
nostic processes. The following image analysis tasks and CNN-based architectures
have significantly advanced the field of automated medical image analysis.

2.1.1 Image classification
Image classification is a fundamental task in computer vision that aims to cate-
gorize images into predefined classes. Over the past decade, deep convolutional
neural networks (CNNs) have dramatically improved the state-of-the-art in im-
age classification performance. Early breakthrough architectures like AlexNet [5]
demonstrated the power of deep CNNs trained on large datasets. VGGNet [63]
showed how increased depth through stacking many 3×3 convolutional layers
can further enhance accuracy. GoogLeNet [64] introduced the inception module
to efficiently expand the network width and capture multi-scale features.

More recently, ResNet [7] addressed the challenges of training very deep net-
works by introducing skip connections that enable residual learning. The ResNet
architecture allows for effective training of extremely deep networks, signifi-
cantly outperforming previous architectures. As described by He et al. [7], ResNet
achieves state-of-the-art accuracy on the ImageNet dataset while having lower
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complexity than the VGGNet. The residual learning framework enables the train-
ing of networks that are substantially deeper (more layers) than those used pre-
viously, leading to significant accuracy gains from increased depth. Figure 2.1
depicts the skip connection and introduces a residual learning building block,
where the drawing represents one ResNet layer.

Figure 2.1 Diagram of a residual learning building block. Image taken from ResNet paper [7]

In radiology, CNNs are used to detect and classify various pathologies. For
example, a Rajpurkar et al. [65] introduced CheXNet, a deep CNN trained on a
large dataset of chest X-rays (ChestX-ray14 [66]) to detect pneumonia. CheXNet
outperformed radiologists in identifying pneumonia, showcasing the potential of
CNNs in improving the diagnostic accuracy in radiology. Further advancements
in a study by Ardila et al. [67] present an end-to-end deep learning model that
predicts the risk of lung cancer by analyzing CT images. Beyond radiology, CNNs
have shown remarkable success in other medical imaging fields. In histopathol-
ogy, CNNs have been utilized to classify tissue images, aiding in the detection
of cancers. Coudray et al. [68] used deep learning to distinguish lung adenocar-
cinoma from squamous cell carcinoma with performance comparable to expert
pathologists. Additionally, CNNs have advanced dermatology by classifying skin
lesions from dermoscopic images, as demonstrated by Esteva et al. [69], whose
model achieved dermatologist-level performance in identifying skin cancer. These
applications illustrate the considerable impact of CNNs on medical image classifi-
cation, enabling earlier and more accurate diagnoses across a broad spectrum of
diseases.

2.1.2 Image segmentation
Image segmentation is another important application of CNNs in medical imag-
ing. Unlike classification, segmentation aims to partition an image into multiple
segments (sets of pixels) to simplify or change the representation of an image
into something that is more meaningful and easier to analyze. Image segmen-
tation can be approached through several methods. Conventionally, techniques
like thresholding, edge detection, and region-growing were used. However, these
methods often struggle with complex images and variability in lighting, texture,
and shapes. Deep learning approaches, particularly CNNs, have demonstrated
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superior performance by learning features directly from the data with higher ro-
bustness. Several key architectures have been developed for deep learning-based
image segmentation, which are summarized below.

• Fully Convolutional Network (FCN) for semantic segmentation [70]: FCNs
replace fully-connected layers with convolutional layers to output spatial
maps, enabling pixel-wise prediction.

• SegNet [71]: Badrinarayanan et al. have proposed SegNet, which employs
an encoder-decoder architecture to capture context and reconstruct segmen-
tation maps.

• U-Net [12]: Developed by Ronneberger et al., the U-Net is particularly de-
signed for biomedical image segmentation, utilizing a symmetric encoder-
decoder structure with skip connections to combine low-level and high-level
features.

2.1.2.A U-Net: convolutional networks for biomedical image segmentation
The U-Net [12] architecture (Figure 2.2) is a pioneering and the most established
model in the domain of biomedical image segmentation. The U-Net consists of
two main parts: the encoding path and the decoding path. The encoding path (left
side of Figure 2.2) is a typical convolutional network with repeated application
of two 3×3 convolutions (unpadded convolutions), each followed by a rectified
linear unit (ReLU) [72] and a 2×2 max-pooling operation with stride 2 for down-
sampling. At each downsampling step, the number of feature channels is doubled.
This path captures context through increasingly abstract representations. The de-
coding path (right side of Figure 2.2) consists of an upsampling of the feature
map followed by a 2×2 convolution (“up-convolution”) that halves the number of
feature channels. This is concatenated with the correspondingly cropped feature
map from the encoding path, followed by two 3×3 convolutions and ReLU. This
structure enables precise localization by combining high-resolution features from
the encoding path with the upsampled output.

Training objective: The U-Net training strategy includes many standard data
augmentation techniques, with the addition of elastic deformations, to increase the
robustness and generalization ability of the model. This is particularly important
in biomedical applications, where annotated data are scarce. The architecture also
incorporates a weighted loss function to emphasize the separation of touching
objects, which is a common challenge in cell segmentation tasks. The model can be
trained with the standard loss functions such as a pixel-wise Cross-Entropy (CE)
Loss, Mean-Squared Error (MSE) losses (commonly used for regression tasks),
or using a Dice-Sørensen coefficient (DSC) loss which is particularly useful for
segmentation tasks in medical imaging. The DSC loss quantifies the similarity
between predicted and GT segmentation maps.

Performance: The U-Net has achieved significant success in various biomedical
segmentation tasks. It won the ISBI cell tracking challenge 2015 by a large margin
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Figure 2.2 Schematic of the U-net architecture. Each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top of the box. The spatial sizes are provided at
the lower-left edge of each box. White boxes represent concatenated feature maps. The arrows denote
the different operations. Figure obtained from the original paper [12]

in several categories, demonstrating its efficiency and accuracy. The U-Net can be
trained end-to-end using very few images only, making it a practical solution for
many image analysis tasks where the data are limited.

2.1.3 Object detection
Object detection is a fundamental task in computer vision that involves identi-
fying and localizing objects within an image. Unlike image classification, which
assigns a single label to an entire image, object detection aims to detect and clas-
sify multiple objects within the image and provide their precise locations in the
form of delineated bounding boxes. This technology has numerous applications,
including autonomous driving, security surveillance, and medical image analysis.
Object detection algorithms typically generate bounding boxes around objects of
interest in an image. The process involves several key steps, mentioned below.

• Feature Extraction: Extracting object features from the input image using
convolutional neural networks (CNNs) to obtain feature maps.

• Region Proposal: Generating a set of candidate regions or bounding boxes
that may contain objects.

• Classification and refining localization: Classifying the proposed regions into
object categories and refining the bounding boxes to better fit the objects.

Several significant architectures have been developed for object detection, each
contributing to improving the accuracy and efficiency.
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Figure 2.3 Diagram of the YOLO model performing detection as a regression problem. It divides
the image into an S×S grid and for each grid cell predicts B bounding boxes, the confidence values
related to those boxes, and C class probabilities. These predictions are encoded as a tensor of size
S × S × (B∗5 + C). The image is taken from the first YOLO paper [76].

• R-CNN (Region-based Convolutional Neural Networks) [73]: R-CNN uses
selective search to generate region proposals and applies a CNN to clas-
sify and refine each proposal. While accurate, R-CNN is computationally
intensive due to its multi-stage pipeline.

• Fast R-CNN [74]: Being an improvement over R-CNN, Fast R-CNN com-
bines region proposal and classification into a single network, significantly
reducing computation time by sharing convolutional features.

• Faster R-CNN [75]: Faster R-CNN introduces a Region Proposal Network (RPN)
that shares full-image convolutional features with the detection network,
enabling nearly cost-free region proposals and improving detection speed.

• YOLO [76]: The You Only Look Once (YOLO) architecture is a first-of-its-
kind architecture that predicts object location and class probabilities on a
grid from the full image in one forward pass, significantly improving speed
and accuracy over prior approaches.

2.1.3.A YOLO
The You Only Look Once (YOLO) architecture [76], proposed by Redmon et al.,
represents a paradigm shift in object detection by framing it as a single regression
problem, directly predicting bounding boxes and class probabilities from full
images in one forward pass through the network. There are many versions of
YOLO, currently reaching up to YOLOv11 [77]. The following section discusses
the core principle of the architecture.

Architecture: As depicted in Figure 2.3, the YOLO model divides the input
image into an S × S grid, where each grid cell is responsible for predicting B

bounding boxes and confidence scores for those boxes. Each bounding box con-
sists of five predictions: the image coordinates of the box center (x, y), its width
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and height (w, h), and a confidence score indicating the presence of an object and
the accuracy of the box. Each grid cell also predicts C conditional class probabili-
ties, assuming that an object is present. These probabilities are multiplied by the
individual box confidence predictions to produce the final scores for the bound-
ing boxes. The YOLO network consists of a single CNN that processes the entire
image at once, making it extremely fast. The original YOLO network uses 24 con-
volutional layers, followed by 2 fully-connected layers. The network architecture
enables real-time object detection, enabling a balance between speed and accuracy.

Training objective: YOLO’s loss function combines multiple components: (1) Lo-
calization loss, which measures errors in the predicted bounding-box coordinates,
(2) Confidence loss, that measures errors in the predicted confidence scores for an
object to be in a particular grid cell, and (3) Classification loss, which accounts for
errors in the predicted class probabilities for each grid cell.

Performance: YOLO is known for its fast inference speed, capable of processing
images at 45 frames per second. The model trades-off accuracy against speed,
when compared to models like Faster R-CNN. Its ability to perform real-time
object detection makes it suitable for real-time applications and areas where infer-
ence speed is crucial.

2.1.3.B Object detection in medical image analysis
Object detection is increasingly applied in medical image analysis, particularly
in radiology, to identify and localize abnormalities such as tumors, lesions, and
other pathological findings. DeepLesion [78], proposed by Yan et al., is a large-
scale dataset and deep learning framework for universal lesion detection in CT
scans. The framework uses a variant of Faster R-CNN to detect a wide variety
of lesions. RetinaNet [79] combines the speed of single-shot detectors like YOLO
with the accuracy of two-stage detectors like Faster R-CNN. The model utilizes a
focal loss to handle class imbalance. This architecture has been applied to detect
microcalcifications in mammograms.

Deep learning-based object detection has significantly advanced the capability
to detect and localize objects within images accurately and efficiently. Architec-
tures like R-CNN, Faster R-CNN, and YOLO have paved the way for real-time and
high-accuracy detection solutions. The continuous development and application
of these techniques promise further advancements in the field of medical image
analysis.

2.1.4 Object pose estimation
Object pose estimation is a valuable task in computer vision that involves de-
termining the position and orientation of objects in a 3D space from 2D images.
Unlike object detection, which focuses on identifying and localizing objects within
an image, pose estimation aims to provide more detailed information about the
object’s spatial configuration. This information is essential for applications such
as robotic manipulation, augmented reality, and in specialized medical image
analysis applications. Object pose estimation typically involves predicting six
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Degrees-of-Freedom (6-DoF) of an object: three for translation (x, y, z-coordinates)
and three for rotation (roll, pitch, yaw).

The prediction process can be divided into three main steps. (1) The model
extracts key object features from the image using convolutional neural networks
(CNNs) or other feature extraction methods. (2) Pose prediction is performed
using these features to estimate the object’s position and orientation in the 3D
space. (3) Optimization techniques are applied to refine the predicted pose for
improving accuracy.

Pose estimation can be approached through various methods, including direct
regression, where the network directly predicts the pose parameters, or by gen-
erating intermediate representations, like 2D keypoints or heatmaps, which are
then used to infer the pose.

2.1.4.A YOLO 6D
The YOLO 6D model depicted in Figure A.1 in Appendix A is an extension of the
YOLO architecture specifically designed for real-time 6-DoF object pose estima-
tion. This model combines the speed and efficiency of the YOLO framework with
the capability to predict 6D poses.

Architecture: YOLO 6D extends the original YOLO framework by incorporating
6D pose estimation capabilities. The architecture processes an input image and
predicts key points corresponding to the projection of the 3D bounding box of the
object. The 2D-3D correspondences from the prediction can then be used to solve
the object pose. The network consists of several convolutional layers, followed by
fully-connected layers. The key components of YOLO 6D in the order of operation
include the following steps.

• Grid Division: The image is divided into an S × S grid. Each grid cell pre-
dicts several bounding boxes and their associated confidence scores, class
probabilities, and 2D projections of the 3D corners of an object.

• 2D-to-3D Correspondences: The YOLO 6D model predicts the 2D image coor-
dinates of the projected corners of the 3D bounding box of the object. These
2D projections are used to establish correspondences between the 2D image
and the 3D model.

• Pose Estimation: Using the 2D-3D correspondences, the 6-DoF pose of the ob-
ject is estimated through a Perspective-n-Point (PnP) algorithm [80], which
solves for the object’s position and orientation in the camera coordinate
system.

Training objective: YOLO 6D is trained using heavy augmentations of real-world
datasets. The loss function is a combination of localization loss, confidence loss,
classification loss, and key point projection loss. The key point loss ensures accu-
rate prediction of the 2D projections of the 3D corners, which is crucial for precise
pose estimation. Various transformations are applied to the training images, such
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as scaling, rotation, and translation, to make the model robust to different view-
points and lighting conditions.

Performance: YOLO 6D is known for its real-time performance, capable of
processing images at high throughput rates while providing accurate 6D pose
estimates.

2.1.4.B Object pose estimation in medical image analysis
While object pose estimation in medical imaging has hardly been attempted, land-
mark localization plays a role in medical image analysis, especially in radiology,
where accurate spatial information about anatomical structures is essential for
diagnosis and treatment planning. Payer [81] proposed a method for detecting
anatomical landmarks in X-ray images using a heatmap-based approach. This
method is used for tasks such as cephalometric landmark detection in dental
radiographs and vertebrae localization in images of the spine.

Deep learning-based landmark prediction and pose estimation have signifi-
cantly advanced the ability to determine the position and orientation of objects in
3D space. Architectures like YOLO 6D have demonstrated the feasibility of real-
time 6D pose estimation, providing both speed and accuracy. In medical image
analysis, prediction models are transforming radiological procedures by enabling
precise localization and orientation of anatomical structures, which are crucial for
diagnosis, treatment planning, and surgical interventions.

These architectures and applications of CNNs in medical image analysis not
only help to automate and refine diagnostic procedures, but also significantly
contribute to early detection and improved prognosis, thereby enhancing the
overall efficacy of medical interventions.

2.2 Generative models
2.2.1 Variational Autoencoders
A Variational Autoencoder (VAE) [47] is a type of latent variable generative model.
It consists of an autoencoding architecture that generates a probabilistic latent
representation, z ∼ p(z) of the input data (x), from which, after training, can be
sampled to generate new data points, x ∼ p(x|z). We introduce the latent variables
z and the joint distribution factorized as p(x, z) = p(x|z)p(z). This modeling
approach expresses the generative process. During training, we only have access
to the input data x. As such, through probabilistic inference we can compute the
marginal distribution (integrate over the unknown variable, z). The (marginal)
likelihood function is then calculated as

p(x) =

∫
p(x|z)p(z)dz. (2.1)

To compute the integral (marginal likelihood) involves integrating over all pos-
sible configurations of the latent variables z, weighted by their likelihood and
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prior probability. In general, this integral is intractable because the dimensionality
of z can be very high, making the integral over such a space computationally
prohibitive (dimensionality). Thus, VAEs employ a technique called variational
inference to approximate p(z|x) with a simpler, parameterized distribution qϕ(z|x).

2.2.1.A Variational inference for non-linear latent variable models
Since the integral cannot be calculated exactly, a simple approach is to use the
Monte Carlo approximation, leading to

p(x) =

∫
p(x|z)p(z)dz = Ez∼p(z) [p(x|z)] (2.2a)

≈ 1

K

∑
k

p(x|zk). (2.2b)

In line 2.2b, a sample from the prior over the latents is drawn, zk ∼ p(z). This
method is straightforward and feasible, due to the rapid growth of computational
capabilities, allowing to sample a substantial number of points. Nonetheless, from
a statistical perspective, when the latent variable z is multi-dimensional and the di-
mensionality K is large, we encounter the curse of dimensionality. Consequently,
to adequately explore the space, the required number of samples escalates expo-
nentially with K. If an insufficient number of samples are taken, the resulting
approximation will be notably inaccurate.

Advanced Monte Carlo methods [82] can be employed to tackle this problem,
but these techniques are still vulnerable to the same curse of dimensionality. An
effective alternative is to use variational inference [83]. To this end, we consider
a set of variational distributions parameterized by ϕ, denoted as {qϕ(z)}ϕ. For
example, Gaussian distributions parameterized by their means and variances,
where ϕ = {µ, σ2}, could be used. These distributions are well-defined, and it
is assumed they assign non-zero probability mass across all possible values of z
within the space ZM . Consequently, the logarithm of the marginal distribution
can be approximated using a log-likelihood framework. Taking this perspective,

ln p(x) = ln

∫
p(x|z)p(z) dz (2.3a)

= ln

∫
qϕ(z)

qϕ(z)
p(x|z)p(z) dz (2.3b)

= lnEz∼qϕ(z)

[
p(x|z)p(z)

qϕ(z)

]
(2.3c)

≥ Ez∼qϕ(z) ln

[
p(x|z)p(z)

qϕ(z)

]
(2.3d)

= Ez∼qϕ(z) [ln p(x|z) + ln p(z)− ln qϕ(z)] (2.3e)

= Ez∼qϕ(z) [ln p(x|z)]− Ez∼qϕ(z) [ln qϕ(z)− ln p(z)] . (2.3f)

We have used Jensen’s inequality [84], [85] in Equation (2.3d), which suggests the
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Figure 2.4 Schematic of the Variational Autoencoder. The input data and its reconstruction is
represented by the blue blocks. The green block depicts the encoder that is trained to predict a mean
and standard deviation of a low-dimensional multivariate Gaussian distribution. The decoder is
depicted in purple.

lower bound on the likelihood. Using a neural network to estimate the parameters
(amortization) of the variational posterior qϕ(z|x) instead of qϕ(z) for each x, we
obtain:

ln p(x) ≥ Ez∼qϕ(z|x) [ln p(x|z)]− Ez∼qϕ(z|x) [ln qϕ(z|x)− ln p(z)] . (2.4)

This approach results in a similar autoencoder architecture, however, character-
ized by a stochastic encoder, qϕ(z|x), and a stochastic decoder, p(x|z). The term
‘stochastic’ underscores that both the encoder and decoder operate as probability
distributions, distinguishing this model from deterministic autoencoders. This
model (Figure 2.4) is the Variational Autoencoder [47], [86] and utilizes the amor-
tized variational posterior. The lower bound of the log-likelihood function in this
model is termed the Evidence Lower Bound (ELBO).

As depicted in Equation (2.4), the ELBO comprises of two parts: The first com-
ponent Ez∼qϕ(z|x) [ln p(x|z)], acts as the negative reconstruction error, illustrating
the process where x is encoded to z and then decoded back. The second compo-
nent,
Ez∼qϕ(z|x) [ln qϕ(z|x)− ln p(z)], serves as a regularizer and is equivalent to the
Kullback-Leibler divergence (KL) between the two distributions.

2.2.1.B Practical variational autoencoder
In practice, there are a few additional components that make VAEs work well for
high-dimensional data such as images, which are listed below.

1. Encoder: This part of the network takes the input data and transforms it
into a distribution over the latent space. It is typically performed with a
series of convolutional, non-linear activations and downsampling layers [47].
However, recent work [87] extended the approach to utilize transformers [8]
and the attention mechanism for obtaining qϕ(z|x) as well.
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2. Reparameterization trick: The latent variable z is typically sampled from a
distribution qϕ(z|x) parameterized by ϕ, like a Gaussian distribution with
mean µ and variance σ2. Sampling z directly from qϕ(z|x) introduces a level
of stochasticity that hinders the direct computation of gradients with respect
to ϕ. To overcome this, the reparameterization trick reformulates z as a
deterministic function of ϕ and an independent random variable ϵ, which
is the source of randomness. Variable z can be computed as z = µ+ σ ⊙ ϵ,
where ϵ is a noise variable sampled from a standard Gaussian distribution,
ϵ ∼ N (0, I) and ⊙ is the element-wise multiplication.

3. Decoder: This component samples points from the latent distribution defined
by the encoder and attempts to construct the data from these samples. The
low-dimensional sample z, is progressively transformed with convolutional
layers and upsampled using either an interpolation method or a learnable
transposed convolution to obtain images.

VAEs have significantly advanced the field of generative modeling, providing a
robust framework for learning complex distributions and generating new data
instances that are similar to the given dataset. The flexibility of VAEs allows them
to be applied across a broad spectrum of applications, from image generation and
enhancement to complex data imputation and anomaly detection. Moreover, the
ongoing research into VAEs continues to yield a wide range of improvements,
including enhancing model stability, increasing sample diversity, and reducing
the gap between the variational approximation and the true posterior. Researchers
are also exploring hybrid models that combine VAEs with other neural architec-
tures, aiming to leverage their generative capabilities while overcoming some of
their inherent limitations. As the field progresses, these enhancements promise to
unlock even more sophisticated capabilities, further cementing the role of VAEs
in the toolkit of advanced machine learning methodologies.

2.2.2 Normalizing Flows
Normalizing Flows (NFs) (Figure 2.5) [88] represent a class of generative models
that provide a robust framework for exact likelihood estimation, a feature that
sets them apart in the landscape of statistical modeling. At the core of NFs is the
utilization of a sequence of bijective (one-to-one) transformations, which system-
atically map between complex data distributions and simpler and tractable latent
distributions. This bijectivity is crucial, as it ensures the exact computation of the
likelihood for any sample, by enabling the reverse transformation process. This
effectively circumvents the often intractable integrations typically occurring in
generative modeling.

The fundamental mechanism of NFs—transforming the target data distribu-
tion px(X) into a known, simple distribution (typically a Gaussian) pz(Z) via
invertible mappings (forward normalizing direction), enables precise density es-
timation. Sampling from the base distribution and applying the inverse trans-
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formation (reverse, generative direction) enables sample generation. Specifically,
if z0 is a random variable with a simple, known density p0(z0), a normalizing
flow transforms z0 into another random variable zK using a series of invertible
transformations f1, f2, . . . , fK :

zk = f−1
k (zk−1), k = 1, 2, . . . ,K, (2.5)

where zK is the output random variable whose distribution we aim to model, and
fk are the transformation functions. Each fk is required to be differentiable and
its inverse f−1

k must also be differentiable. The inherent tractability of the likeli-
hood function across these transformations not only facilitates efficient inference,
but also enhances the interpretability and applicability of the model in diverse
domains. Consequently, NFs are increasingly favored in the field of generative
modeling, offering a compelling blend of flexibility, precision, and computational
feasibility. By constraining these transformations to be bijective, inverse transfor-
mations exist that transform the base distribution p0(z0) to the complex distribu-
tion pk(zk) (generative direction) and, thereby enabling sample generation. An
NF is optimized with a maximum likelihood objective [88], specified by

log p(x) = log p0 (z0)−
K∑
i=1

log

∣∣∣∣det dfi
dzi−1

∣∣∣∣ , (2.6)

which is further explained in the next subsection.

2.2.2.A Probability content preservation
The change of variables theorem allows to compute the probability density func-
tion of the transformed variable zK in terms of the base variable z0 and the trans-
formation applied. The derivation is as follows for a single transformation f that
maps a variable x to a variable z (i.e., z = f(x)). The function is invertible, so
x = f−1(z). Given this invertible and differentiable function f where z = f(x), the
probability density functions of z and x, denoted as pz(z) and px(x), respectively,

Figure 2.5 Illustration concept of the Normalizing Flow architecture. The model (green) is trained
to transform the input data (blue) to a Normal distribution (red) through a series of invertible
transformations in the forward direction. Sampling from the Normal distribution and applying the
inverse flow steps in the reverse or generative direction enables creating new sample data points.
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are related by the following equality∫
px(x) dx =

∫
pz(z) dz = 1. (2.7)

Under the transformation z = f(x), the differential dz is given by:

dz = f ′(x) dx (2.8)

where f ′(x) is the derivative of f with respect to x. In the multi-dimensional case,
f ′(x) is replaced by the Jacobian matrix Jf (x) of the transformation, and dz be-
comes the determinant of the Jacobian, |detJf (x)|dx. Substituting the transformed
differential, the integral over z can be rewritten into∫

pz(z) dz =

∫
pz(f(x)) · |detJf (x)|dx. (2.9)

Given that both integrals must equal 1 (as per Equation 2.7), we establish that∫
px(x) dx =

∫
pz(f(x)) · |detJf (x)|dx. (2.10)

By the property of integral equality, we infer that

px(x) = pz(f(x)) · |detJf (x)|. (2.11)

With z = f(x) and its inverse transformation x = f−1(z), we can express pz(z) in
terms of px(x) starting with Equation (2.11) as

pz(z) = px(f
−1(z)) · |detJf−1(z)|. (2.12)

Here, Jf−1(z) is the Jacobian of the inverse transformation f−1. For multiple trans-
formations z0 → z1 → . . . → zK , the density function at each step incorporates
the determinant of the Jacobian of the transformation from the previous step

p(x) = pzK (zK) = pz0(z0)

K∏
k=1

∣∣∣∣det df−1
k

dzk
(zk)

∣∣∣∣ , (2.13)

where zk = fk(zk−1) and z0 has a known distribution pz0 . This framework allows
the modeling of a complex distribution pzK through simpler, sequential transfor-
mations.

2.2.2.B Types of Flows
Various types of transformations can be employed at each flow step to develop
models that effectively capture the complexities of intricate probability distribu-
tions. The transformation step in a flow model should adhere to several crucial
criteria. Such important criteria are that the transformations should be: (1) in-
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vertible to ensure no loss of information, (2) differentiable to facilitate the com-
putation of the Jacobian determinant, (3) the Jacobian determinant itself should
be tractable for efficient probability density updates during training, and finally
(4) the transformations should be flexible to model complex, multi-modal distri-
butions, enabling the system to adapt to diverse data characteristics. This thesis
employs three specific types of flows: planar flows, radial flows, and coupling
flows. Each has its own formulation and characteristics, making them suitable for
various applications in density estimation and variational inference.

1. Planar Flow: Planar flows [89] apply a non-linear transformation to data
distributions via a planar deformation. The transformation can expand and
contract distributions along a specific direction. The function for planar
flows is defined as

f(z) = z+ uh(wT z+ b), (2.14)

where parameter z is the original variable, u and w are learnable parameters
(vectors ∈ RD), b is a learnable bias parameter ∈ R, h is a non-linear activa-
tion function, typically a hyperbolic tangent (tanh). The absolute Jacobian
of this transformation is:∣∣∣∣det

∂f

∂z

∣∣∣∣ = ∣∣1 + uTh′(wT z+ b)w
∣∣ , (2.15)

where h′ is the derivative of h with respect to x, which can be any smooth
element-wise non-linearity function.

2. Radial Flow: Radial flows [89] introduce a radial transformation, affecting
the distribution around a specific point. The radial flow is defined by

f(z) = z+ β h(α, r)(z− z0), (2.16)

where r = ∥z − z0∥ is the Euclidean distance from z to z0, β and α are
learnable parameters controlling the strength and smoothness of the trans-
formation and h(α, r) = 1/(α + r) models the radial effect. The absolute
Jacobian is given by∣∣∣∣det

∂f

∂z

∣∣∣∣ = (1 + βh(α, r))
d−1

(1 + βh(α, r) + βh′(α, r)r) . (2.17)

3. Coupling Flow: Coupling flows, introduced by Dinh et al. [90], [91], al-
low for expressive transformations, while keeping the Jacobian determinant
tractable. Coupling flows split the input vector (z) into two parts, z1:d and
zd+1:D. The transformation uses one part to transform the other part,

y1:d = z1:d

yd+1:D = g(zd+1:D; θ(z1:d)),
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and its inverse becomes

z1:d = y1:d

zd+1:D = g−1(yd+1:D; θ(y1:d)),

where g is a differentiable transformation, parameterized by θ, which are
functions of the unchanged part z1:d. The Jacobian of this transformation is
triangular, [

Id 0
∂yd+1:D

∂z1:d

∂g′(zd+1:D;θ(z1:d))
∂z1:d

]
, (2.20)

making the determinant

det
(
∂z

∂y

)
=

D∏
i=d+1

∂zi
∂yi

. (2.21)

It is evident that θ can be any arbitrary function, such as a neural network,
which underscores the flexibility and power of coupling layers with tractable
Jacobian determinants. However, these layers process only half of the input
at a time, necessitating an additional transformation to manipulate the entire
input vector. A permutation layer is a straightforward, yet effective transfor-
mation that can be integrated within a coupling layer. Since a permutation
is volume preserving, its Jacobian determinant is invariably equal to unity,
it can be strategically applied after each coupling layer to alter the order of
variables, such as reversing them in order. This approach ensures thorough
processing of the input while maintaining the efficiency and simplicity of
the model structure.

NFs are inherently designed to model continuous probability density func-
tions (PDFs), however, in practice, data is often discrete. As such, in addition to
the above-mentioned types of flow steps, a data dequantization flow step is re-
quired. Since this thesis only employs standard dequantization methods, they are
additionally described in Appendix A.3 for completeness.

2.3 Uncertainty in deep learning
Despite the advancements in deep learning, these models often lack robust mech-
anisms for quantifying and expressing uncertainty in their predictions. This de-
ficiency can lead to overconfident decisions in critical applications where safety
and reliability are paramount.

The importance of understanding and quantifying uncertainty in deep learn-
ing is threefold. Firstly, it enhances the general safety of AI systems by enabling
them to recognize and communicate the limits of their knowledge, which is cru-
cial in high-stakes scenarios such as medical diagnosis and autonomous vehicle
navigation. Secondly, uncertainty estimation can improve the model robustness
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against noisy, corrupt, or adversarial data inputs. Finally, it provides valuable in-
sights into model behavior, which can guide improvements in model architectures,
training procedures, and data utilization.

This section briefly introduces popular methodologies for uncertainty quan-
tification in deep learning. For a detailed introduction, the reader is referred to the
overview by Hüllermeier and Waegeman [92]. In this introduction we consider
a classification scenario (although the methods can also be extended to segmen-
tation), involving a discrete label space Y consisting of C classes. The models
are denoted as f : X → ∆C and the output a class probability vector located on
the probability simplex ∆C for any input x ∈ X . Uncertainty estimators in this
context can be categorized into two primary types: distributional methods and
deterministic methods.

2.3.1 Deterministic methods
Deterministic methods (non-Bayesian) [93] directly produce a scalar uncertainty
estimate u(x), rather than modeling a probability distribution over class probabil-
ity vectors. This can be achieved with loss prediction techniques [94], [95] which
include an additional MLP head that estimates the loss of the network’s prediction
f(x) on each input x, assuming the loss reflects a notion of (in)correctness. An
example for the classification problem, is an uncertainty term predicting cor-
rectness (the model estimates u(x)) of the likelihood that the predicted class
ŷ := argmaxc∈{1,...,C} fc(x) is the correct class y, i.e., p(ŷ = y).

Another approach for Deterministic Uncertainty Quantification (DUQ) [96] is
to learn a latent mixture of Radial Basis Function (RBF) densities on the training/-
validation set and outputs u(x), which measures how close an input’s embedding
is to the mixture means. The Mahalanobis method [97] constructs a similar latent
mixture of Gaussians in a post-hoc manner and perturbs inputs in an adversarial
manner to train a classifier for separating ID and OOD samples.

Deterministic methods are often more computationally efficient than distri-
butional methods, explaining why they are still widely used, despite potentially
lower expressiveness.

2.3.2 Distributional methods
Distributional methods provide an output represented as a probability distribu-
tion q(f(x) | x) over all possible class probability vectors. This posterior dis-
tribution, commonly abbreviated as q(f), corresponds to a Bayesian hypothesis
posterior p(f | D) induced by a parameter posterior p(θ | D) ∝ p(D | θ)p(θ),
where D denotes the training dataset.

For instance, Spectral-Normalized Gaussian Processes (SNGP) [98] achieve
these distributions by approximating a Gaussian process over the classifier out-
put, aided by spectral normalization on all network parameters. The Laplace
approximation [99] estimates a Gaussian posterior over network parameters us-
ing an efficient Hessian approximation. This post-hoc method is applied to a
point estimate network, enabling multiple output samples drawn per input. La-
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tent heteroscedastic classifiers (HET-XL) [100] predict a heteroscedastic Gaussian
distribution over the pre-logit embeddings and sample multiple embeddings that
are then transformed into class probability vectors.

Unlike the above methods, Dropout [101] and Deep Ensembles [102] do not ex-
plicitly construct distributions q(f), but instead directly sample from them, either
by performing M repeated forward passes or by training M models, respectively.
Shallow ensembles [103] provide a lightweight approximation of deep ensembles,
utilizing a shared backbone and M output heads (often referred to as “experts”).
A single forward pass yields M logit vectors per input. A deterministic network
corresponds to a Dirac posterior in the parameter space.

From the above-mentioned methods, none of them is directly adopted, but
we draw inspiration from ensemble methods with a light-weight approximation.
However, the conceptional direction chosen for implementation in this thesis is
to directly train models to fit the uncertainty distributions, from which can be
sampled at a later stage. For practical applications utilizing uncertainty estimates,
such as threshold-based rejection (OOD detection), a scalar uncertainty output
u(x) ∈ R is often required instead of a distribution q(f). To obtain this, aggregators
compile the distributions into scalar uncertainty estimates u(x). The adopted
techniques include calculating the Bayesian Model Average f̃(x) := Eq(f)[f(x)]
and using its entropy as the uncertainty estimate σ(x), or quantifying the variance
of q(f). Mucsányi et al. [104] extensively discuss and compare many of these
aggregation function giving the scalar uncertainty estimates.

2.3.3 Uncertainty disentanglement
Although the previously discussed methods provide a singular, general uncer-
tainty estimate, literature advocates for a more nuanced approach. These methods
decompose the posterior distribution q(f), obtained via any of the aforementioned
techniques, into multiple estimators. This decomposition aims to quantify differ-
ent forms of uncertainty, specifically epistemic and aleatoric uncertainties [105].

Epistemic uncertainty, which arises from insufficient data, can be mitigated as
more information is gathered. In contrast, aleatoric uncertainty originates from
the inherent ambiguity in the data-generating process and is fundamentally ir-
reducible [92]. It is crucial for the estimators to accurately disentangle these un-
certainties: the aleatoric estimator should exclusively reflect aleatoric uncertainty,
while the epistemic estimator should capture only epistemic uncertainty.

This section evaluates two prominent approaches designed to generate such
paired estimators by providing formal definitions for obtaining the related uncer-
tainties.

2.3.3.A Information-Theoretical Decomposition
Following the information-theoretical (IT) decomposition [106]–[108], the entropy
of the predictive distribution p(y|x) =

∫
p(y|x, f) dq(f) can be decomposed into
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an aleatoric and an epistemic component with

Hp(y|x)(y)︸ ︷︷ ︸
predictive

= Eq(f)
[
Hp(y|x,f)(y)

]︸ ︷︷ ︸
aleatoric

+ Ip(y,f |x)(y; f)︸ ︷︷ ︸
epistemic

, (2.22)

where Hp(y | x)(y) ≡ H(Y | x) is the predictive entropy and Ip(y, f | x)(y; f) ≡
I(Y ;F | x) the mutual information. The aleatoric component quantifies the spread
of the labels as the average over the plausible model posteriors, while the epistemic
component captures only the disagreement among the predictions p(y | x, f)

across different models f .
This thesis adopts information-theoretical methods within Bayesian frame-

works, where interpreting uncertainty across model predictions is fundamental.
By leveraging the alignment of these methods with Bayesian and probabilistic
interpretations, this approach facilitates a robust quantification of uncertainty.

2.3.3.B Bregman Decomposition
For completeness, Bregman decompositions [95], [109], [110] employ not only
the posterior distribution q(f), which each method computes internally, but also
consider the ground-truth generative process pgt(x, y). These methods analyze the
expected loss across all possible training datasets. The loss function DF used in
this analysis is a Bregman divergence function, which is more general and can
take forms such as the Euclidean distance or the Kullback-Leibler (KL) divergence.
This Bregman decomposition is specified by

Eq(f),pgt(y|x) (DF [y ∥ f(x)) ]︸ ︷︷ ︸
predictive

=Epgt(y|x) [DF (y ∥ f∗(x)) ]︸ ︷︷ ︸
aleatoric

+Eq(f) [DF (f(x) ∥ f(x)) ]︸ ︷︷ ︸
epistemic

+DF (f∗(x) ∥ f(x))︸ ︷︷ ︸
bias

.

(2.23)
The aleatoric uncertainty, as represented by f∗(x) = Epgt(y|x)[y] which is the Bayes
predictor, corresponds to the Bayes risk (uncertainty in our case) of the generative
process. This risk is inherently irreducible and remains unaffected by the posterior
q(f). In practical settings, where the generative process is unknown, the aleatoric
term is estimated by Eq(f)

[
Hp(y|f,x)(y)

]
. Epistemic uncertainty, similar in concept

to the IT decomposition, is measured as the average distance between the pos-
terior samples f ∼ q(f) and their centroid f̄(x) = argminz Eq(f) [DF (z ∥ f(x)) ].
Although this average is computed in a dual space, in some instances, it finally is
equivalent to the Bayesian Model Average (BMA) [110]. Additionally, to complete
the theoretical framework, Bregman decompositions incorporate a third term re-
ferred to as the bias. This term accounts for uncertainties related to the function
class, extensively discussed by Von Luxburg and Schölkopf [111].

This concludes the background introduction to uncertainty quantification
which is extensively utilized in Chapter 4 and Chapter 6.
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3.1 Detecting pancreatic cancer
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), is one
of the most aggressive and lethal forms of cancer. Early detection is crucial for im-
proving patient outcomes, yet it remains challenging due to the disease’s asymp-
tomatic nature in its initial stages and the pancreas’s deep location within the
abdominal cavity. The development and implementation of advanced Computer-
Aided Detection (CADe) systems can play a pivotal role in enhancing the accuracy
and timeliness of PDAC diagnosis.

Early detection and characterization of pancreatic tumors is one of the most
promising strategies to improve the prognosis and Overall Survival (OS) of pan-
creatic cancer patients [112], [113]. This can be attributed to several factors. First,
patients diagnosed in early disease stages often have smaller tumors with less
vascular involvement. Therefore, they present a much higher 3-year survival rate
(82%) compared to patients diagnosed in later disease stages [114].

Second, pancreatic imaging requires specific expertise and radiologists often
have to rely on other patterns due to small and iso-attenuating tumors sometimes
being barely visible, which might indicate malignant disease. Although CT and
MRI generally achieve acceptable sensitivity measures in diagnosing pancreatic
cancer, subtle pancreatic changes may be missed on abdominal imaging, especially
in asymptomatic patients [115], [116]. Radiologists’ sensitivity to detecting small
and iso-attenuating PDACs with sizes smaller than 2 cm on CT has been reported
to be between 58–77% [117]. Lack of expertise may result in delayed recognition
and refrain patients from curative treatment. This may be even more pertinent in
hospitals without specific pancreatic expertise [118].

Third, over the years, various studies have reported the presence of visible
secondary features, prior to actual diagnosis [119]–[121]. Kang et al. demonstrated
that secondary signs are present in 88% of the cases. The most common secondary
sign was pancreatic duct dilation, and vascular invasion was the most commonly
missed [116]. In addition, studies reported that indicative changes of PDAC are
visible on imaging 6-18 months prior to actual diagnosis in 50% of patients [120],
[122].

Fourth, pancreatic cancer treatment is centralized, which limits the exper-
tise to certain hospitals. Previous studies have shown that patients with non-
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metastasized pancreatic cancer had a greater likelihood of receiving surgical treat-
ment when the diagnosis was established in an expert pancreatic cancer center,
compared to non-expert hospitals [123]. Centralization of pancreatic surgery may
further enhance this discrepancy between expert and non-expert hospitals. Mul-
tidisciplinary team meetings may preserve the expertise in various treatment
techniques; however, patients still need to be identified before expert assessment
can be performed. Due to late recognition, most patients advance to late stages
of the disease or even metastases. Pancreatic tumor detection using CT imaging
is considered to be the gold standard for the detection of pancreatic cancer [124].
The obtained accuracies of pancreatic ductal adenocarcinoma (PDAC) detection
using CT imaging or other radiological imaging techniques largely depends on
radiological expertise. Lack of such expertise may result in delayed recognition,
which is problematic since only 20% of patients at the time of diagnosis are eligible
for resection [125]. Therefore, early detection of pancreatic cancer has significant
potential to enable surgical treatment and improve treatment outcomes.

Summarizing the above discussion, the following key aspects are considered
as crucial in pancreatic cancer treatment.

• Early detection is vital for safeguarding any survival chance.
• CT remains the gold standard for imaging the disease.
• Pancreatic cancer is not easily visible, experts refer to secondary tumor-

indicative signs for early detection.
• Clinical expertise to detect pancreatic cancer is centralized, both in terms of

hospitals and medical experts.
Because of the multi-faceted nature of the problem, CADe systems provide an

important and interesting solution direction to the medical expert.

• Many developments towards a CADe system for pancreatic cancer detection
have been attempted. Understanding their current performances and the
research directions will highlight aspects they lack or why the methods have
not been adopted in clinical practice. Providing a broad overview of State-of-the-
art (SOTA) techniques for pancreatic CADe systems and approaches is important
for further development and creating sufficient background.

• The input to the CADe system will be CT images of good quality acquired
with modern equipment. However, the pancreatic tumor is not directly visi-
ble in such images. Following the clinical way-of-working, the CADe system
has to incorporate secondary signals to improve detection performance and
provide clinicians with reliable and useful input. Enabling a CADe system to
acquire and utilize these secondary signs for improved detection performance is a
valuable research question that the research in the chapter aims to solve.

• Knowing a system that can benefit from such secondary signals and acquir-
ing them still poses a challenge in optimally combining the separate parts.
A complete end-to-end approach is desired, starting with a newly acquired CT scan,
capturing the relevant tumor-indicative features, providing them to a detection
algorithm to finally make an accurate tumor assessment.
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Figure 3.1 Schematic depicting the development of a CADe PDAC detection framework discussed
in this chapter.

This chapter provides a comprehensive overview of the development of a
CADe framework for PDAC detection, as illustrated in Figure 3.1. It begins with
an introduction to pancreatic cancer and the clinical context of pancreatic cancer.
The significance and challenges of early PDAC detection are discussed, followed
by a review of AI-based CADe methods to enhance detection accuracy. The chapter
details a novel method utilizing secondary tumor-indicative features for detection,
including the data collection, model architecture, and experimental results. With
the hypothesis of the value in the secondary tumor-indicative features established,
a multi-stage approach for segmentation of the relevant features is explored and
robust detection framework using a Residual 3D U-Net architecture is presented.
Additional sections cover data collection for algorithm development and the chal-
lenges in PDAC detection, concluding with future directions and a summary of
the chapter’s findings.

3.2 The significance of AI in PDAC detection
Artificial Intelligence (AI) has become an indispensable resource in modern health-
care, particularly in the realm of medical imaging. Initial endeavors to automate
pancreatic tumor detection using CT scans have set the groundwork for more so-
phisticated AI applications. In developing CAD systems for PDAC detection, two
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principal methodologies are primarily utilized: deep learning and radiomics. Each
approach offers unique benefits and, when integrated, can significantly enhance
the performance and reliability of pancreatic tumor detection systems. This syn-
ergy between AI techniques holds promise for revolutionizing PDAC diagnostics,
thereby improving patient outcomes through earlier and more precise detection.

3.2.1 Previous work in PDAC detection
This section provides a comprehensive overview of the current AI applications in
the radiological detection of pancreatic cancer, addresses the existing challenges in
clinical implementation, details the state-of-the-art in CAD, and outlines prospec-
tive developments in the field.

As a conventional technique, radiomics involves the extraction of a vast array
of handcrafted image features, known as radiomics features, from digital images.
These features form the foundation for traditional machine learning models to
predict and analyze the underlying data.

In recent years, several studies have showcased promising AI methodologies
for detecting pancreatic cancer from CT scans. A synthesis of the most impactful
studies and their results, along with comparisons of different AI architectures, is
presented in Table 3.1. Although these studies have yielded significant findings,
it is crucial to recognize the inherent limitations in some research, particularly
those focusing solely on binary classification of CT scans. Such studies typically
differentiate only between the presence or absence of a tumor, which may not
suffice for clinical decision-making where tumor localization is critical.

To provide patients with adequate treatment, clinicians often require addi-
tional results, such as the location of the tumor. Moreover, AI-based tools can be
leveraged to distinguish PDAC from auto-immune pancreatitis. Various studies
have demonstrated impressive results in distinguishing auto-immune pancre-
atitis from PDAC exploiting both deep learning-based and radiomics-based ap-
proaches [126], [127]. Recently, Rigiroli et al. [128] took a first step in investigating
whether tumor-related and alternative CT radiomic features improve preoperative
assessment of arterial involvement in patients with surgically proven PDAC. The
model showed a sensitivity and specificity of 0.620 and 0.770, respectively, and a
higher performance compared to the radiologist’s assessment.

Quantitative MRI, such as T1 and T2 image mapping, allows for accurate tis-
sue characterization and provides early indicators of biological changes [140].
Additionally, it offers a non-ionizing radiation alternative. However, availabil-
ity of high-quality MRI data is limited and literature on the detection of PDAC
using MRI is scarce. Kaissis et al. have applied machine learning to MRI im-
ages to preoperatively predict survival and molecular subtypes in patients with
PDAC [141]–[143]. Their survival prediction model achieves impressive results
with a sensitivity and specificity of 0.870 and 0.800, respectively, and an area under
the curve (AUC) of 0.90 for the prediction of above-median vs. below-median
overall survival (OS) [141]. Liang et al. [144] have specifically aimed at develop-
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ing a deep learning algorithm allowing automatic segmentation of gross tumor
volume and reported performances, similar to expert radiation oncologists [144].
Over the years, only few other studies have reported MRI-based machine learn-
ing models and mainly have focused on identification and characterization of
pancreatic abnormalities. An overview of the most notable results is provided by
Table 3.2.

From the described tables and overview, it can be observed that CT is the
preferred imaging method for developing PDAC detection algorithms. This is
likely due to its superior resolution and comprehensive anatomical detail for the
pancreas, availability of data for training algorithms, and alignment with the clin-
ical way-of-working. Segmentation methods demonstrate similar performance to
classification-based methods in terms of detection accuracy. Moreover, segmen-
tation techniques offer the added benefit of providing precise tumor localization,
which is critical for planning follow-up treatments. By generating detailed tumor
maps, these methods facilitate more targeted and effective therapeutic interven-
tions, ultimately improving patient outcomes in the management of PDAC. The
integration of segmentation methods into clinical practice enhances the ability to
monitor tumor progression and response to treatment over time.

In addition to the previously mentioned advantages of segmentation-based
approaches for PDAC detection, providing information about secondary tumor-
indicative features is highly valuable for clinicians during diagnosis [149]. These
features assist radiologists in assessing the presence, size, shape, and potential
extent of the tumor’s involvement with surrounding tissues. It is hypothesized
that these secondary features could also enhance the performance of automated
detection algorithms for PDAC. In the next section, we explore this hypothesis
by implementing a deep learning-based segmentation algorithm for PDAC that
incorporates these secondary features, aiming to improve detection accuracy and
provide comprehensive diagnostic information.

3.3 PDAC detection by utilizing clinically-relevant secondary
features

Initial diagnosis of pancreatic tumors through CT imaging maintains acceptable
sensitivity measures of around 90% for pancreatic cancer diagnosis [150]. In gen-
eral, pancreatic tumors appear hypodense (darker in the CT image) compared
to normal pancreatic parenchyma. However, indeterminate CT findings such as
small tumor size, growth pattern, iso-attenuating pancreatic cancer and the diffi-
culty in differentiating from chronic pancreatitis, can make accurate delineation of
viable tumor tissue a troublesome task [151]. In addition, pancreatic cancer often
causes non-specific symptoms prior to developing into an advanced stage. There-
fore, it is important to identify secondary features which may indicate disease to
improve early detection of PDAC.

CAD techniques hold great promise in enabling the early detection of PDAC.
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Such a tool allows for expert knowledge to be captured and shared, which can be
used when the patient is first screened for the disease. Deep learning-based CAD
methods have achieved impressive results in recent years. For these methods to be
successfully adopted in the clinical environment, it is necessary to provide more
than the standard “black-box” machine learning model [152], [153]. For clinical
acceptance of this technology, on top of high detection accuracies, it is essential to
provide additional insights into the model’s operation.

In this research, we propose a PDAC segmentation model that utilizes the
same visual cues in the surrounding anatomy that experts use when looking for
the presence of PDAC. This focus and way of working is to maximally lever-
age easily accessible external information and fully exploit clinical expertise, to
ultimately optimize classification and localization performance. Since we start
from the radiologists’ reasoning, the proposed method becomes more clinically
meaningful. For instance, a clinician pays close attention to pancreatic ductal
size as a large (potentially dilated) duct could be indicative of tumor. Compared
to normal pancreatic tissue in a CT scan, pancreatic cancer appears less visible
as an ill-defined mass. It enhances poorly and is hypodense between 75% and
90% of arterial phase CT cases. For this reason, experts utilize secondary features
which may be predictive of pancreatic cancer. These include, but are not limited
to: ductal dilatation, hypo-attenuation, ductal interruption, distal pancreatic atro-
phy, pancreatic contour anomalies and common bile duct dilation. For a detailed
description of these indicators, we refer to the work by Zhang et al. [149].

As these secondary features offer crucial information to experts during analy-
sis, we hypothesize that a deep learning-based CAD method could also explicitly
leverage this information. As such, we enrich the input of a 3D U-Net [154] seg-
mentation model with an indication of the external secondary features and observe
state-of-the-art results in PDAC detection. In this study, we validate the hypothe-
sis that incorporating secondary features significantly enhances PDAC detection.
This model is trained using ground-truth annotations of these secondary features.
The performance is then evaluated by testing the model with manually annotated
secondary features as inputs. In Section 3.4, we further investigate methods for
automatically extracting such secondary features and integrating them into the
developed model.

Because of the broad nature of the provided overview, the most-influential
and recent papers are recapitulated (Section 3.3.1) as a reference for the proposed
method. The data collected to train the proposed methods is discussed in Sec-
tion 3.3.2. Section 3.3.3 introduces the proposed method for PDAC segmentation
and Section 3.3.4 and Section 3.3.5 details the experiments executed to test the pro-
posed approach. Finally, the results of the conducted experiments are presented
in Section 3.3.6.

3.3.1 Related work on PDAC detection
Invaluable research towards automated PDAC detection has also been conducted.
In addition to the comprehensive overview of AI-based pancreatic cancer detec-
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tion methods discussed in Section 3.2.1, we highlight a few recent methods in
detail with the same objective as the proposed method.

Recently, both Liu et al. [155] and Si et al. [156] implemented a patch-based
PDAC classification of CT volumes. These classification methods show high ac-
curacy, but clinicians require more interpretable results, such as an indication
to the tumor area, as discussed in Section 3.2.1. A Multi-Scale Coarse-to-Fine
Segmentation method is proposed by Zhu et al. [157] that makes use of three
U-Net-like segmentation models at different resolutions in a segmentation-for-
classification approach. The output of the three networks are combined using a
connected-component graph between the adjacent tumor-positive voxels. Finally,
false positive components from the graph are pruned and the tumor voxels are se-
lected based on empirically selected thresholds. We refer to the work by Zhu et al.
as previous SOTA with a sensitivity of 94.1% and a specificity of 98.5%. Similarly,
Alves et al. [158] have proposed a segmentation-for-classification approach that
makes use of four nnU-Net-based models [13] to ultimately detect the presence of
the tumor. Although these methods achieve impressive results, the engineering
nature of the solutions lack transparency, sufficient motivation from a clinical
perspective, and suffer from long inference times. We propose a more intuitive,
clinically-motivated method for PDAC detection. The proposed approach utilizes
clinically-relevant cues to realize SOTA detection scores while significantly simpli-
fying the network architecture, making it more suitable for deployment at medical
centers.

3.3.2 Data collection for PDAC detection
In this retrospective single-center research study, we collected contrast-enhanced
CT images of 97 control CT scans and 99 scans with PDAC located in the pan-
creatic head from the Catharina Hospital in Eindhoven (CZE), The Netherlands.
Patients aged 18 years or above who underwent surgical treatment at the CZE
for pancreatic head cancer, were eligible when both a surgical report and a com-
plete pathology report were available. All CT scans were manually annotated in
preparation for this research. Relevant anatomical structures (tumor, pancreas,
pancreatic duct and common bile duct) were annotated by a surgical resident
and supervised by an expert abdominal radiologist, using IntelliSpace Portal 1.
Patients in the control group were derived from a previous randomized control
trial in which patients with esophageal cancer were included. These patients all
had a CT scan as an initial preoperative action.

The external secondary features play an important role in the expert radiolo-
gist’s decision-making w.r.t. tumor presence, size and location. As such, signifi-
cant annotation effort was spent not only on the tumor, but also these indicative
features. Two important factors that arose during this process were: (1) how to
annotate some of the structures that belong to the same organ (pancreatic duct

1Software package available from Philips Healthcare, The Netherlands.
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Figure 3.2 Two slices from a case highlighting the involvement of the different structures and
dilated ducts caused by the tumor blockage. These features are indicative of the tumor presence and
its location. The pancreas is depicted in blue, dilated pancreatic duct in yellow-ish, dilated common
bile duct in green and the tumor, causing the blockage and ductal dilation, is depicted in light red.
The bottom-right image shows the involvement between the tumor (indicated by yellow arrow) and
pancreas in dark red.
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inside the pancreas), and (2) how to treat cases at locations where a gradual tran-
sition from one structure to the other occurs. The latter occurs when the common
bile duct enters the pancreas, but importantly, also at the borders of the tumor
itself. We decided that each structure should be annotated and stored individually
to preserve maximum information. However, this implied that CT voxels could
potentially belong to multiple structures simultaneously. Figure 3.2 depicts an
example case and corresponding ground-truth annotations. The last image at the
bottom-right shows the overlap between the pancreas and the tumor and the
pancreatic duct in the pancreas.

In addition to our proprietary dataset, we utilize the publicly available Med-
ical Decathlon [159] (MD) dataset in this research. As part of the MD dataset,
Task 07 involves the segmentation of the pancreas and pancreatic masses (intra-
ductal papillary neoplasms, pancreatic neuroendocrine tumors, or pancreatic duc-
tal adenocarcinoma). This dataset consists of patients with often well-developed
late-stage disease. As a result, there is a high proportion of large tumors and eas-
ily detectable cysts in this dataset. In addition, due to the extensive disease and
associated symptoms, many cases contain metal stents, which could incur a bias
in a learning algorithm. To the best of our knowledge, this is the only publicly
available dataset that aims to detect pancreatic cancer, and although very valuable,
it is still a step away from being an ideal dataset for training a deep learning-based
CAD system for detection of PDAC. To provide some insight into how the pro-
posed approach competes against other methods on this public benchmark, we
have supplemented 10% of this dataset’s training set (28 cases) with suspected
adenocarcinoma in the pancreatic head with separate annotations for the pancre-
atic duct, common bile duct, the full pancreas (unobstructed by the tumor) and
the tumor. This subset will be used as an additional, extra critical unseen test set
in the upcoming experiments2.

3.3.3 Model architecture
By now, it should be evident to the reader that detecting and accurately delineating
PDAC is a complex and challenging task, even for experts. The detailed data and
meticulous annotations described in the previous section highlight many of these
difficulties, underscoring the need for a robust method to address them. Therefore,
the development of advanced techniques to effectively manage these intricacies is
crucial for improving diagnostic accuracy and clinical outcomes.

Bearing in mind the subtle nature and development of PDAC, a CAD system
should utilize any available information to maximize tumor detection perfor-
mance, but also provide the necessary assistance in the early diagnosis of pancre-
atic cancer, in a clinically-interpretable way.

The objective is to develop a segmentation method suitable for both classifica-
tion and localization. A standard 3D U-Net (depicted in Figure 3.3) is employed
that takes the segmentation maps as input, capturing the external indicators, to

2Newly annotated data: https://github.com/cviviers/3D UNetSecondaryFeatures
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segment the tumor in the CT volume. These external secondary features are used
by expert radiologists to identify and localize the tumor, but can much more easily
be obtained and identified in a non-expert setting with minimal effort. In practice,
the secondary features can also be obtained by a preceding segmentation model
to streamline the process even further. Taking the difficulties related to accurate
segmentation of pancreatic tumor into account (even for an expert radiologist),
our objective is not to acquire a detailed segmentation map. Instead, we aim for a
global indication of where the tumor is located. A detailed, segmentation network
or radiologist can then initiate follow-up work. In this chapter, we first imple-
ment a coarse detection solution with support of a radiologist, and later in a fully
automated manner.

Figure 3.3 Diagram of the 3D U-Net used for tumor segmentation in abdominal CT scans, provided
with detailed external secondary feature segmentation maps. The 3D convolutional filters are reused
across the different channels containing the CT and secondary features (Pancreas, Pancreatic Duct
and Common Bile Duct) of the input data.

The 3D U-Net is 3 layers deep with 16, 32 and 64 convolutional filters at each
layer. A sigmoid activation function is employed to convert the model predicted
logits to tumor confidence values. The model is largely based on the standard
U-Net architecture.

3.3.4 Experiments
To evaluate the proposed approach and the extent of the influence of the external
secondary features in the tumor detection, the following experiments are con-
ducted. (1) We start by setting the baseline at detecting a tumor using only the CT
scan. This baseline is established using the popular nnU-Net [13] (Full-Resolution
3D) and a the already proposed 3D U-Net. (2) In a follow-up experiment, we add
the detailed segmentation maps of the pancreas and ducts to the CT scan, in a
concatenated channel-wise fashion. The same 3D U-Net is trained to segment the
tumor, but now with this additional information derived from the radiologist.
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(3) As an ablation experiment, we replace the segmentation maps of the ducts
with a Boolean input. The pancreatic and common bile ductal 3D volumes are re-
placed with unity values if they are dilated. (4) Finally, we apply the models, using
the CT scan and detailed segmentation maps, trained and validated on the three
datafolds of the proprietary dataset, to ultimately test the model performance
with the Medical Decathlon Dataset as test set.

3.3.5 Data preparation and training details
The radiologist starts the investigation for a tumor by localizing the pancreas in
the CT scan. Once the pancreas has been located, the radiologist slides through
scans looking for the various aforementioned indicative secondary features of the
cancer. As such, we preprocess our data in the same flow as the expert’s way of
working. The radiologist derives a detailed segmentation map of the pancreas,
pancreatic duct and common bile duct from the abdominal CT scan and uses them
as the secondary features. In practice, this is performed by a prior segmentation
model, but since this is outside the scope of this initial step, we use the ground-
truth detailed segmentations provided by the expert radiologist as input. We crop
the CT scan and corresponding labels, uniformly spaced around the pancreas’
center. The crop is shaped within the dimensions [192, 256, 256] in the z, x, y-axes,
respectively. Additional resampling and normalization is performed, as described
in the work by Isensee et al. [13] prior to cropping. We stack the CT scan, pancreas
and two ducts channel-wise along a 4th dimension in preparation for training.
Our final dataset is: D = {(X1,Y1), ...(XN ,YN )}, with N being the dataset size,
where Xn ∈ RC×Z×W×H is the 4D volume of input data and Yn ∈ RZ×W×H is
the 3D tumor segmentation map.

In our implementation, we perform threefold cross-validation using a random
70/30% training and validation split and report results on the validation sets and
the MD dataset as test set. The custom 3D U-Net is implemented in PyTorch and
extends on the work by Wolny et al. [160]. During training, we only employ a cross-
entropy loss, a batch size of 2, an Adam optimizer with an initial learning rate of
1 × 10−4 and a weight decay of 1 × 10−5. We use extensive data augmentation,
consisting of random flipping, random rotation, elastic deformation, contrast ad-
justment, and additive Gaussian and Poisson Noise. In all experiments, the same
crops, hyperparameters and augmentation techniques are used, with a hardware
configuration based on a TITAN RTX GPU3.

3.3.6 Results and discussion
The experimental results are listed in Table 3.3. In all cases, the model outputs are
binarized (standard threshold setting of 0.5) and converted to segmentation maps.
For the classification metric, if the resulting segmentation prediction overlaps
with the ground-truth tumor label, even partially, we consider it a true positive
prediction. If there is yes (no) prediction and a tumor without overlap, it is a false

3Commercially available from Nvidia Corp., Santa Clara, California, USA
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positive (negative). In the case there is no prediction whatsoever and the tumor is
absent, we consider it a true negative. The sensitivity, specificity and average DSC
values (across all the tumor-positive cases) on the validation sets are reported.
We also show the results of the model using the full input (CT scan and detailed
segmentation maps) and apply it to the test MD dataset.

Data Input Model Sensitivity Specificity DSC

CT Only nnU-Net 0.92± 0.02 0.27± 0.16 0.42± 0.04
CT Only 3D U-Net 0.98± 0.03 0.11± 0.10 0.40± 0.07
Binary Ducts 3D U-Net 0.83± 0.24 0.19± 0.06 0.16± 0.04
Full 3D U-Net 1.00± 0.00 0.99± 0.02 0.31± 0.07

Test MD - Full 3D U-Net 0.99± 0.02 N/A 0.31± 0.05

Table 3.3 Results obtained with the nnU-Net and 3D U-Net with different input channel infor-
mation. Given the limited amount of data, numbers are constrained to two decimals (N/A is not
applicable).

Results on Baseline: The nnU-Net and the proposed 3D U-Net showcase similar
performance when trained using only the CT scan as training data. In both models,
the network eagerly tries to segment the tumor, even when the tumor is absent,
resulting in a low specificity.

Adding Binary Ducts: The segmentation performance does not improve when
the model is trained using the additional binary labels, indicating the presence of
dilated ducts. Hence, duct dilation alone is not a decisive tumor factor and has to
be combined with other indicative features from the tumor region.

Detailed Segmentation Maps: The model is provided with the detailed segmen-
tation maps of the ducts and pancreas, along with the CT scan. We observe that
the model can learn the connection between these indicative features and the
presence of a tumor. The model correctly predicts tumor with an overlap of the
ground-truth segmentation in the majority of cases. In a single case, the tumor is
predicted to be at a different location than the label (False Positive). We observe
a lower DSC value compared to the models with only CT scans as input. These
baseline models maximally predict tumors in most cases. This results in a higher
DSC value when there is a tumor factually present, at the expense of a large num-
ber of false positive predictions. When increasing sensitivity, the model logically
locates more tumors, albeit some with low DSC values.

Test Set (MD) Experiments: We observe a very similar, impressive performance
when the model is applied to the MD dataset as test set. In two of the three
datafolds, the models showcase 100% sensitivity, without missing a tumor. The
model from the third fold missed the tumor in one of the cases and made no
prediction whatsoever (False Negative). The same tumor was predicted with a
relatively high DSC value of 0.40 and 0.26 in the other two models. Averaging the
sensitivity across the three models (100%, 100% and 96.43%) explains the 99±2%
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sensitivity at the bottom of the table. Visual example predictions on the test set
can be observed in Figure 3.4. Note that the aim of this study is not to achieve
maximum segmentation accuracy and rather develop a more effective, clinically-
relevant and efficient method for tumor detection. The required inference time
using this method is 0.33 s on an RTX 2080 Ti GPU.

(a) 3D DSC: 0.44 (b) 3D DSC: 0.29 (c) 3D DSC: 0.01

Figure 3.4 Segmentation performance from three different cases. An example of a low-performing
segmentation is visualized (3.4c). The figure is best viewed in color.

3.3.7 Limitations of the initial PDAC detection model
The secondary features used in this work and provided as external input are
acquired from the same CT scan. It is expected that a CNN would be able to
extract these embedded spatial features and discover the causality between these
features and the presence of the tumor. Unfortunately, this expectation does not
hold. Future work should investigate these underlying causal factors and how to
enable a CNN to learn this available information.

Additionally, up to this point, the features provided and utilized by the model
have been the ground-truth annotations. In the following Section 3.4, we investi-
gate if the same performance can be obtained if the these features are automatically
obtained with a segmentation model.

3.3.8 Summary on utilizing secondary features
Despite the eminent success of deep learning networks, even for the detection
of PDAC, the method presented in this work demonstrates that external tumor-
indicative features can significantly enhance CAD performance. We optimize a
segmentation for classification and localization approach, by adding the easily
obtainable and clinically valuable external secondary features used by the radiolo-
gist, to considerably improve classification performance. The proposed approach
consists of a 3D U-Net that takes the CT scan, along with a segmentation map
of the pancreas, pancreatic duct and common bile duct as input, in order to fi-
nally segment the pancreatic tumor. By integrating these indicative secondary
features into the detection process, the proposed method achieves a sensitivity
of 99±2% (one case missed), yielding 5% gain over the previous state-of-the-art
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method. The proposed method also achieves a specificity of 99% and ultimately
requires no sacrifice of specificity in favor of sensitivity. In addition, the method
provides further insights into the tumor location and obtains similar segmentation
scores on prospectively collected and the Medical Decathlon data. Generally, this
research reveals the important value of explicitly including clinical knowledge
into the detection model. We suggest that future CAD methods integrate higher
orders of feature information, particularly valuable clinical features, into their
domain-specific problem to improve performance when such information can
be identified. The proposed method paves the way for equipping clinicians with
the necessary tools to enable early PDAC detection, with the aim to ultimately
improve patient care.

3.4 Automated segmentation of external and clinically-relevant
features for improved PDAC detection

In the previous Section 3.3, a neural network is trained for tumor detection through
segmentation of early stage PDAC. The model is trained with Computed Tomog-
raphy (CT) images and manual annotations of the pancreas, the pancreatic duct
and the common bile duct. These are indicative clinical features that medical pro-
fessionals use to assist in the detection of pancreatic tumors. For example, bile
duct dilation is a common result of an obstruction in the bile ducts caused by the
presence of a tumor. The work indicates that including this pathological response
to a nearby tumor as input, improves the tumor detection rates of the AI model.

In the previous work, we have developed a PDAC segmentation model to ex-
ploit auxiliary clinical information. To investigate whether such additional clinical
features benefit tumor detection, we specifically consider the pancreas, common
bile duct and pancreatic duct. Based on this previous work, we develop three-
dimensional (3D) segmentation models to segment these clinical features. By
segmenting these structures using deep learning models, manual input is not
further required to include these features, so that the segmentation becomes fully
automated.

In this section, we introduce a multi-stage segmentation workflow designed to
automatically gather auxiliary information. The overarching sequential workflow
and attributes common to the deep learning models used in this process are
detailed in Section 3.4.1. Further specifics on the pancreas segmentation models
and ductal segmentation models can be found in Section 3.4.2 and Section 3.4.3,
respectively. Finally, the performance of these models and their impact on the final
tumor detection models are analyzed and discussed in Section 3.4.4.

3.4.1 Multi-stage segmentation approach
We propose a multi-level coarse-to-fine sequential processing workflow [161] to
segment the pancreas and bile ducts, consisting of multiple sequential (initially
two) U-Net-based CNNs, to use as input for a tumor segmentation and detection
model. For the segmentation models, we use the U-Net with the repository devel-
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oped by Wolny et al. [160], due to its applicability to various medical image tasks.
The models are patch-based networks using patches of size 128×128×128 voxels,
with a stride of 32×32×32 voxels, using a unity batch size, trained with the binary
cross-entropy loss and the Adam optimizer [162]. The sensitivity, specificity and
segmentation accuracy in terms of the Dice Similarity Coefficient (DSC) of each
individual model are finally evaluated in the proposed workflow.

In order to limit the search space over the CT scan, the processing sequence
commences with coarse pancreas segmentation over the full-image CT scan, which
is used to crop the scan to a narrower region that is positioned about the center
of the pancreas mask. This crop with a size of 192×256×256 voxels is used as
input for fine segmentation of the pancreas through a second model. The crop is
refined by the final pancreas segmentation and used as input for segmentation
of the bile duct structures. Using the predicted masks of the pancreas and bile
ducts, a final model then detects and segments the tumor. Figure 3.5 depicts the
proposed complete sequential processing chain and networks.

Figure 3.5 Illustration of the tumor detection processing workflow for processing CT scans with
intermediate segmentation of relevant anatomical structures. Block A: The pancreas is segmented
using multiple 3D U-Nets in a coarse-to-fine structure. All data is then cropped around the seg-
mented pancreas to a size of 192×256×256 pixels. Using the input of the cropped CT scan, the
bile ducts are segmented with another model. Block B: The CT scan and the masks for the pan-
creas, the common bile duct and the pancreatic duct are then used as inputs for the final tumor
segmentation-for-detection model.
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3.4.2 Pancreas segmentation
The pancreas is segmented using two 3D U-Nets in a coarse-to-fine approach. The
coarse model processes the full-image CT scan of different sizes and a lower reso-
lution (resampled to twice the target voxel spacing at 2 mm×1.37 mm×1.37 mm),
with a patch-based approach of patch size 64×128×128 voxels. The fine pancreas
segmentation model is trained with an image crop of the CT scans with the finer
spacing. The fine pancreas model also uses a patch-based 3D U-net model trained
only over the cropped region of the CT scan. This approach is used to improve the
segmentation accuracy of the pancreas. During training, the selection of patches is
guided by their relation to the ground-truth mask: if there is no part of the ground
truth inside the patch, then the patch is omitted with high probability for further
processing.

3.4.3 Bile duct segmentation
For the bile duct segmentation, two different methods are implemented: (1) a
multi-label model that segments both bile duct structures and (2) separate single-
label models that segment each structure individually. This allows two different
ways for segmentation of these structures. Segmentation of both structures with
one model potentially provides lower performance than the single-label model.
However, the processing time and required memory is lower when using one
model.

To reduce the occurrence of bile duct segmentation mask fragments, which are
disconnected from the main and largest structure, the cc3d package is used to sep-
arate segmented components [163]. Components not connected to the largest duct
component or without overlap with the pancreas, are categorized as background.
In this way, the final bile ducts are localized over the correct region.

3.4.4 Results & discussion
The secondary feature segmentation performance required by the tumor segmen-
tation model to maintain a high detection accuracy, is evaluated. This method, as
discussed in Section 3.3, employs manually annotated multi-channel input of the
pancreas, pancreatic duct and common bile duct. The performance of the tumor
segmentation model is compared using manually annotated and automatically
obtained input from the anatomical segmentation models.

Evaluation Criteria: The pancreatic duct and the common bile duct are typi-
cally more visible when the ducts are dilated. As a result, for some of the scans
in the proprietary dataset, the bile duct is not annotated. Hence, we present the
segmentation accuracy in terms of DSC only for the cases with annotated bile
ducts. Along with this metric, the specificity and sensitivity with respect to the
segmented masks are presented. Since we employ a segmentation-for-detection
model for tumor detection, the detection sensitivity and specificity are based on
the segmented tumor mask. Compared to Section 3.3.6, here the detection accu-
racy is computed differently. A positive detection is found if a mask is segmented.
If there is a ground-truth mask for the corresponding case, a true positive is ob-
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tained, otherwise this would result in a false-positive detection. The predicted
segmentation does not need to overlap with the ground-truth label for it to be con-
sidered true positive. If no tumor mask is segmented and there is no ground-truth
mask, it results in a true negative. However, if there is a ground-truth mask for
this image, it is classified as a false negative. Based on the aforementioned cases,
the sensitivity and specificity of the tumor detection are determined.

Pancreas & Duct Segmentation: The results of the pancreas segmentation model
and the bile duct segmentation models are presented in Table 3.4, in terms of the
mean DSC as well as sensitivity and specificity of the bile duct masks, measured
over the subset of 28 patients of the MSD dataset. The coarse pancreas segmenta-
tion model predicts coarse pancreas masks with a mean DSC of 0.72±0.05, which
are used to segment the CT scan for a fine pancreas prediction. The fine pancreas
segmentation results have a mean DSC of 0.86±0.03, where the main visible draw-
back of these predictions is an incorrect shape around the edge of the structure
and the mask, as seen in Figure 3.6. The multi-label model bile duct predictions
have a higher mean DSC of 0.60±0.08 and 0.71±0.08 for the pancreatic duct and
common bile duct, respectively, and detected both structures for all images of the
dataset with ground-truth annotations. The multi-label model predicts masks for
the pancreatic duct more frequently than the single-label model, which causes
it to make more regular predictions where there is no ground-truth mask. The
pancreatic duct predictions have a lower mean DSC than the common bile duct
predictions. This can be a result of the structure being smaller than the common
bile duct, which makes the DSC more sensitive to errors. The specificity and sen-
sitivity values of the bile duct structures indicate whether the models predict
bile ducts when there is no bile duct visible (no annotation available). However,
the structures that are incorrectly predicted by the model are in a region where
there would be a bile duct, so the segmented masks may still be valid. Future
research should look into the implications of this effect and aim at more accurate
predictions for the use of these masks in other models.

Tumor Detection: The proposed approach, which entails using predicted clinical
features as input for the pre-trained PDAC model, achieves an outstanding tumor
detection sensitivity of 100% across all the folds on the MSD dataset (see Table 3.5).
The tumor detection specificity is not included in this study, as the MSD dataset
only contains positive tumor cases. Future studies should focus on investigating
the specificity of the model with negative tumor cases. As observed in Table 3.5,
tumor segmentation results have a low mean DSC of 0.31. In Figure 3.6, the seg-
mented masks of three slices from a case are highlighted and it is visible that the
segmented tumor mask is considerably larger than the ground-truth mask for
some cases. During the early PDAC detection stage, obtaining a high detection
sensitivity is the primary focus. Although this work employs a segmentation ap-
proach, the goal of the model is tumor detection. Accurate delineation of the tumor
should be addressed using a refinement segmentation model. For PDAC diagno-
sis and treatment assessment, the important feature of the tumor is its relation to
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Figure 3.6 Segmentation of clinical features pancreas (blue), common bile duct (green) and pan-
creatic duct (orange) as well as tumor (red). Comparison of ground-truth masks, predictions using
single-label model and multi-label model for clinical feature segmentation and tumor predictions
using the corresponding clinical features. Illustration over three slices. The tumor segmentation
obtained with inputs from the single-class model and the multi-class model are compared. It can be
seen that the tumor segmentation with input from the multi-class model is more accurate, especially
in slice 30.
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nearby blood vessels. This feature is used to determine the resection options for
each case. Hence, the follow-up tumor segmentation refinement should have a
focus on the relation to nearby structures rather than the absolute correctness in
shape.

Table 3.4 Measured performance of the pancreas and bile duct segmentation models, in terms of
mean DSC, detection sensitivity (true positive over all folds / total positive cases over all folds) and
specificity (true negative over all folds / total negative cases over all folds), over the MSD dataset.

Single-class model DSC Sensitivity Specificity

Coarse Pancreas model 0.72 ± 0.05 100% NA

Fine Pancreas model 0.86 ± 0.03 100% NA

Pancreatic duct 0.57 ± 0.11 93.3% (70/75) 67% (6/9)

Common bile duct 0.69 ± 0.10 97.5% (79/81) 0% (0/3)

Multi-class model DSC Sensitivity Specificity

Pancreatic duct 0.60 ± 0.08 100% (75/75) 22.2% (2/9)

Common bile duct 0.71 ± 0.08 100% (81/81) 0% (0/3)

Table 3.5 Performance of PDAC segmentation model in terms of mean DSC over the publicly
available MSD dataset. Comparison of methods using manually annotated input of the bile ducts
and pancreas and employing bile ducts segmented by single-class and multi-class AI models.

Method Tumor DSC Tumor Sensitivity*

Manual input 0.31 ± 0.05 99% ± 2%

Multi-class model input 0.31 ± 0.10 100% ± 0%

Single-class model input 0.31 ± 0.09 100% ± 0%

* No negative tumor cases in MSD dataset.

The results of this study show the value of using features that are found to
be relevant for clinicians in the PDAC detection process. In the review of El-
banna et al. [115], several indicative features visible in CT scans are listed, which
are used to identify early stage PDAC. Some examples of these features are abrup-
tion and dilation of bile ducts, irregular pancreatic contour and vascular encase-
ment or narrowing. Encouraging an learning-based detection algorithms to utilize
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these features can potentially improve the detection or segmentation of the dis-
ease, since it has proven valuable for clinicians.

3.5 Detection and localization of pancreatic head cancer on
CT

This section details the development of an end-to-end system designed to enhance
the capabilities of clinicians in diagnosing pancreatic head cancer using computed
tomography (CT) scans. The proposed approach leverages a robust sequential
processing chain to not only detect, but also localize pancreatic cancer effectively,
while ensuring that the results are interpretable in a clinical setting. To achieve
this, the system incorporates the analysis of secondary diagnostic signs, such as
duct dilatation, which are crucial for improving the interpretation of the imaging
results by clinicians. These features help in providing a clearer diagnostic analysis
and assist in the differential diagnosis process

Since the design an end-to-end detection system requires a reconsideration of
the previous work in this chapter, the upcoming extensive description is divided
over multiple subsections. In Section 3.5.1 a critical analysis of the initial PDAC
detection approach is discussed and the steps are detailed to enhance the overall
robustness and potential clinical efficacy. Section 3.5.2 discusses the improved data
collection and labeling strategies for enhanced data quality and diversity, while
Section 3.5.3 highlights key clinical features of the new dataset. Section 3.5.4 details
the complete PDAC segmentation-for-detection framework. The corresponding
deep learning-based model is described in Section 3.5.5 and employs a Residual
3D U-Net architecture. The obtained results for secondary features segmentation
are presented in Section 3.5.7. Section 3.5.8 presents the system’s PDAC detec-
tion performance, followed by a reflection on the results in Section 3.5.9. Finally,
Section 3.5.10 addresses current constraints and future improvement areas.

3.5.1 Reconsidering PDAC detection
To ensure clinical efficacy, an end-to-end PDAC detection model must be both ma-
ture and rigorously validated. Realizing the limitations in the initial components
of the earlier detection system, we reconsider these components and propose a
unified PDAC detection framework.

In this framework, we (1) improve the data quality and quantity, (2) employ
state-of-the-art architectural model components for increased accuracy and robust-
ness and (3) increase the level of automation of the overall system. This compre-
hensive system aims to provide a robust tool for the early and accurate diagnosis
of pancreatic cancer, facilitating timely and targeted therapeutic interventions.

Enhanced data quantity and quality: Since the objective is the design of a
complete end-to-end system, all analysis and guidance should be given by deep
learning models. This naturally places an extra strong requirement on the data
quantity and quality. The previously employed datasets lacked sufficient diversity
and required enhancements in image and annotation quality. The improved and
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enlarged datasets include the following aspects.

• Sufficient dataset size: The dataset size is increased to ensure that the models
are trained on a broad spectrum of cases, thereby improving model robust-
ness and reliability.

• High annotation quality: We ensure high-quality annotations by re-annotating
previously missed structures to improve the accuracy and consistency of the
training data.

• Diverse patient representation: A more diverse patient population is incor-
porated, to better capture variability in the disease presentation, which en-
hances the generalization of the model.

• Test sets enable comprehensive metric evaluation: The inclusion of more patient
cases enables a sufficiently large dataset to facilitate an internal test set. This
test set is used to measure all relevant metrics, ensuring that the model’s
performance is thoroughly assessed.

Improved accuracy and robustness: The updated models obtain higher perfor-
mance and improved robustness in unseen settings, by employing more recent
learning algorithms and techniques. These enhancements aspects are as follows.

• Advanced algorithms and model ensembling: State-of-the-art algorithms are
utilized to improve the model’s ability to extract valuable features to the
PDAC detection task.

• Cross-validation: Rigorous cross-validation techniques are implemented to
ensure that the model performs well across different subsets of data.

Increased automation level: The PDAC detection processing workflow is fully
automated. This higher level of automation is designed to address the following
aspects.

• Highly reduced human intervention: Manual input is fully removed to stream-
line the detection process and reduce the potential for human error.

• Improved efficiency: The detection process is accelerated to provide faster
diagnostic results, which is valuable for timely therapeutic decisions.

• Ensured consistency: The detection results are enhanced in consistency by
standardizing the processing steps, which leads to more reliable and repro-
ducible outcomes.

Incorporating the above-mentioned improvements, an end-to-end PDAC de-
tection framework is proposed to enhance early diagnosis and precise localization
of pancreatic head cancer using CT scans. This framework leverages deep learning-
based segmentation models to effectively detect and localize pancreatic cancer,
ensuring suitable clinical interpretation by integrating secondary diagnostic signs
like duct dilatation. The above-listed improvements enable the fully automated
end-to-end system for PDAC detection and localization.
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3.5.2 Additional data collection and labeling
Acknowledging the limitations posed by the initially small dataset in our study,
we undertook efforts to expand our data resources and improve the overall quality.

Increased size: We have additionally included a collection of 50 patients with up
to two CE-CT images (99 scans) at the CZE, comprising a total of 98 control patients
and 99 patients with pathology-proven pancreatic adenocarcinoma. The dataset
comprised of medical imaging data and relevant clinical information, including
preoperative, intraoperative, and postoperative details obtained from radiology,
pathology, and surgery reports. The medical imaging data consisted of CT scans
utilizing two separate phases. Therefore, a total of 198 CT scans were included
in the PDAC cohort. The included CT scans consist of a portal venous phase and
either a parenchymal phase, a late arterial or late liver phase and a portal venous
phase, allowing for integration of complementary information when obtaining
a cancer prediction for each patient. The CT slice thickness varied between 1.0–
3.0 mm, obtained based on accessibility, also aiming to integrate the diversity of
scans encountered in standard clinical practice.

Improved annotations: A PhD candidate MD, manually (re-)annotated relevant
anatomical structures, consisting of the tumor, pancreas, pancreatic duct, common
bile duct, and various arteries (aorta, superior mesenteric artery, celiac axis, com-
mon hepatic artery, splenic artery, gastroduodenal artery, aberrant arteries) and
veins (vena cava, vena porta, superior mesenteric vein, inferior mesenteric vein,
splenic vein). Bile ducts were annotated in both groups when visible. Annotations
were performed using IntelliSpace Portal 4 and were supervised by an expert
radiologist for pancreatic tumors. Anonymization of subject information occurred
during data collection and analysis.

Diverse dataset: The PDAC cohort included individuals aged 18 years and older
who underwent surgical interventions for cancer of the pancreatic head at the
CZE from 2012 to 2019. Patients were eligible for inclusion if their CT images
included at least two phases and were accompanied by both a surgical report and
a complete pathology report. Exclusion criteria included patients diagnosed with
active pancreatitis at the time of diagnosis, or those with artifacts on CT images,
such as metal stents. Meanwhile, the control group was derived from participants
in the randomized NUTRIENT-II trial at the same hospital, which included pa-
tients diagnosed with esophageal cancer, but who did not have pancreatic tumors.
This expanded dataset is expected to enhance the robustness of our findings by
improving the representation and diversity of our study sample set [164]. All
patients underwent a preoperative CT scan as part of their diagnostic protocol.
Section 3.5.3 discusses further clinical characteristics and details of the dataset.

Test datasets: Including the newly collected data, 15% of the complete propri-
etary dataset is set aside as an internal test set to do evaluation of the developed
framework. Additionally, we again use the publicly available Medical Segmenta-

4Software package available from Philips Healthcare, The Netherlands.
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tion Decathlon (MSD) dataset from the Memorial Sloan Kettering Cancer Center
(Manhattan, NY, USA) for model testing [159]. The dataset has already been sum-
marized and explained in Section 3.3.2.

3.5.3 Clinical characteristics
The dataset contains 197 patients with 290 CT volumes. A total of 99 patients are
diagnosed with pancreatic head cancer, corresponding with 198 CT volumes. The
remaining 98 patients are assigned to the control group with a normal pancreas.
Clinical characteristics of the patients, classified by the presence or absence of
PDAC, are shown in Table 3.6. For the PDAC cohort, the mean age is 74.9 ± 7.5
years with 52 male and 47 female patients. In total, 21 patients have Stage I PDAC,
55 patients Stage II, 20 patients Stage III, and 3 patients have Stage IV PDAC. A
total of 77 patients present with hypoattenuating tumors, 21 with isoattenuating
tumors, and 8 with hyperattenuating tumors. Additionally, 52 patients have pan-
creatic carcinoma, 21 have cholangiocarcinoma, and 24 have ampullary carcinoma.
The median tumor size in the dataset is 2.6 cm (range 2.0–3.5 cm).

Table 3.6 Clinical characteristics of the patients in the PDAC cohort and control cohort. Continuous
variables are displayed as mean ± standard deviation or median (interquartile range). The tumor
stages are Stage I: T1-2N0 PDAC (medical notation); Stage II: T3 or T1-3N1 PDAC; Stage III:
T4 or T1-3N2 PDAC; Stage IV: metastasized. Tumor stages and tumor size are only presented for
PDAC patients. N.A. is not applicable, PDAC is Pancreatic Ductal Adenocarcinoma.

Clinical Characteristics With PDAC W/o PDAC

Number of patients (scans) 99 (198) 98 (98)
Age (years) 74.9 ± 7.5 71.2 ± 8.1
Gender (male/female) 52/47 79/19
Tumor size, Median (cm) 2.60 (2.0 – 3.5) N.A.

Tumor Stage (I/II/III/IV) 21/55/20/3 N.A.

Tumor attenuation on CT
Hypo/Iso/Hyper intense 77/14/8 N.A.

Tumor Origin
Pancreas/Cholangio/Ampullary 52/21/24 N.A.

3.5.4 PDAC segmentation for detection framework
A multi-stage coarse-to-fine framework is designed to enhance the detection pro-
cess of PDAC through sequential refinement steps. The proposed methodology
delineates the detection into several stages, each aiming to progressively augment
the accuracy from a broad to a more detailed analysis. The overall approach is
coarsely the same as the steps validated in the earlier sections, but each stage
contains a stronger model implementation. Initially, (A-1) the framework employs
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a pancreas localization model to determine the coarse position of the pancreas.
Subsequently, (A-2) a fine pancreas segmentation model is applied to delineate
the organ with higher precision. Following this, (B) the segmentation of the com-
mon bile duct and pancreatic duct are conducted, which are crucial for detailed
necessary anatomical insights and accurate PDAC localization. The final stage
(C) integrates these segmented features into a tumor detection model, which uti-
lizes the refined data to achieve precise tumor segmentation. This hierarchical
approach enables systematic progression in detection capabilities, facilitating com-
prehensive analysis and improved diagnostic accuracy. In addition, it follows the
typical clinical workflow when a CT scan is inspected by a clinician for the pres-
ence of pancreatic cancer. The following description of these steps is aligned with
the indicated steps in Figure 3.7.

A-1: Coarse pancreas segmentation: Starting with a new CT scan, the workflow
initiates with the scan resampled to a coarse 1.37 mm ×1.37 mm×2 mm voxel spac-
ing. The segmentation process begins with a coarse delineation of the pancreas on
this full CT scan. This initial step targets a broad delineation of the pancreas across
the full CT scan, functioning to localize the pancreas and yield a subsequent crop
to a region specifically centered around this organ. The preliminary segmentation
is executed using a patch-based (128×128×64 voxels with a stride of 32×32×32
voxels) 3D U-Net [154] architecture designed for coarse volumetric data analysis.

A-2: Fine pancreas segmentation: Following the coarse localization, the CT scan
undergoes a second resampling step to a fine resolution of 0.68 mm×0.68 mm×1 mm,
preparing it for a more detailed analysis. A cropped volume of 256×256×192 vox-
els, derived from the location pinpointed in the previous step, is then utilized as
the input for a second, more precise pancreas segmentation model. This model
is also based on a patch-based 3D U-Net architecture and is specifically trained
to perform high-quality, fine-grained segmentation on the finely resampled data.
The accurate pancreas-centered crop obtained from this model serves as the ba-
sis for subsequent ductal segmentation. Both the coarse and fine models consist
of a four-layer deep U-Net, with each layer containing 32, 64, 128, and 256 con-
volutional filters in a subsequent fashion. However, they are trained on data of
different resolutions to optimize their performance at the stage in the processing
chain.

B: Secondary feature segmentation: For the segmentation of the bile and pancre-
atic ducts a multi-class model that segments both duct structures simultaneously
are employed. The approach utilize a segmentation strategy that processes patches
of size 128×128×128 voxels with a stride of 32×32×32 voxels, thereby promoting
significant overlap and ensuring consistency and continuity across the segmented
regions. The 3D U-Net consist of a similar four-layer network with each layer
containing 32, 64, 128, and 256 convolutional filters. Additionally, the Connected
Components 3D package (cc3d [163]) is employed to enhance segmentation re-
alism by categorizing non-pancreatic connected components, identified within
the bile duct structures as background. This ensures accurate localization of the
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Figure 3.7 Multi-stage framework of AI models for pancreatic tumor detection (The block numbering
matches with the text descriptions).
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ducts within the targeted region. Due to its ease of implementation and improved
inference speed and a comparable segmentation performance, a model that seg-
ments both classes simultaneously is generally preferred over multiple single-class
models (Section 3.4.3).

C: Tumor segmentation: The tumor segmentation model integrates the com-
prehensive CT crop (256×256×192) with the multi-segmentation of previously
delineated anatomical features, conducting a single inference step to segment
PDAC if present. This 3D global perspective allows the model to analyze anatomi-
cal correlations across all three planes, leading to superior performance compared
to alternative, patch-based models. Since we provide the segmentation of the pan-
creas and ducts as input to the detection model, the model is trained to utilize
any valuable feature from these anatomical delineations. Therefore, the model
potentially also includes other secondary features such as atrophic pancreas, size
variations, ductal interruption and peri-pancreatic infiltration. Compared to the
standard U-Nets employed when segmenting the pancreas and ducts, for the tu-
mor a SOTA Residual 3D U-Net architecture is employed to further enhance detec-
tion accuracy. The model and implementation details are discussed in Section 3.8.
The complete PDAC detection sequential workflow is depicted in Figure 3.7.

General attributes: All models are trained using a threefold bootstrapping method
with 70% of the internal dataset (per patient) used to train the model and 15% for
validation. This approach enables maximum usage of 85% of the data without
involving the test set, preventing any form of data leakage. Additionally, this
approach leads to three distinct models for each step of the detection process, all
acting as a separate opinion on the specific task. The approach for comprehensive
tumor detection integrates a series of models in an ensemble framework, enhanc-
ing accuracy and precision. First, the (1) cropped pancreas is supplied into three
pancreas segmentation models trained on the different bootstrapped training sub-
sets. This yields (2) three refined segments of pancreas-centered crops, of which
each is uniquely tailored to capture the organ’s intricate details. Subsequently,
these crops are processed through (3) three respective secondary feature models
for ductal segmentation, specifically designed for each fold. This step is crucial for
generating three accurate sets of delineations, focusing on the pancreatic ducts.
The next stage involves stacking these segmentation maps with the original CT
crop, forming a composite input for the (4) three tumor segmentation models.
From this, three separate tumor prediction crops are derived, each representing
a different perspective of the potential tumor. Finally, (5) an ensemble of these
predictions is collated, culminating in a robust and reliable final tumor prediction
with enhanced confidence. This layered and iterative process not only maximizes
the precision of tumor detection, but also leverages the strengths of multiple mod-
els to provide a more comprehensive and reliable diagnosis. To test the approach,
we have applied the complete detection workflow to a predefined representative
test split encompassing 15% of the proprietary data. In addition, the models have
been applied to the public MD dataset as a separate and external test set.
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3.5.5 Residual 3D U-Net architecture

Figure 3.8 Diagram of the Residual 3D U-Net utilizing secondary features for improved segmenta-
tion of pancreatic tumors.

The Residual 3D U-Net architecture is depicted in Figure 3.8 and enhances
the conventional U-Net framework through the integration of residual learning
mechanisms. The model adopts the encoder-decoder structure, but is augmented
with additional residual connections across convolutional blocks that facilitate the
seamless transfer of spatial and contextual information across and deeper in the
network.

Residual Learning Blocks: Each residual block within the encoder and decoder
consists of two 3D convolutional layers, each employing its own group normal-
ization [165] (an alternative batch normalization when few batch elements are
employed during training). Importantly, these blocks include residual connections
(acting as a shortcut) that add the input of the block directly to its output, followed
by the block’s non-linear activation. These residual connections are key to prevent
the vanishing of gradients by facilitating unimpeded gradient flow during back-
propagation, even in deeper network architectures. These connections are applied
at all stages of the network at various layers and in both the encoder and decoder.
The application of residual connections in the decoder is adopted for processing
consistency [166].

Implementation details for PDAC segmentation: We implement a four-layer deep
Residual 3D U-Net (C-Model in Figre 3.7) for segmenting pancreatic tumor. The
layers in the network use 24, 32, 48 and 16 convolutional filters in each convolution
block at each layer. A LeakyRelu is employed as the the non-linear activation
function in the network.

Training details: The model is trained using an AdamW [167] optimizer fol-
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lowing a one-cycle learning rate scheduler starting at 1×10−5, that increases to
1× 10−3 over 5% of the training duration. After this initial increase, the learning
rate is slowly decreased to 1×10−7 for the remainder of the training process. The
model is trained for 300 epochs on each datafold.

3.5.6 Web application for fully automated PDAC detection
To streamline the PDAC detection system, ensure reproducible results and to make
it more accessible for clinical use, we have developed a web application that fully
automates the complete detection process. This application is designed to be user-
friendly, allowing clinicians to easily upload CT scans in the Neuroimaging Infor-
matics Technology Initiative (NIfTI) format and receive comprehensive diagnostic
outputs without requiring specialized technical knowledge. This implemented
web application has been applied to and in collaboration with the clinicians to de-
termine the final test results and evaluate them appropriately. The web application
operates through the following steps.

1. Uploading CT Scans: Users upload their CT scans in NIfTI format. The ap-
plication supports secure and efficient upload mechanisms to handle large
medical imaging files, ensuring data integrity and confidentiality.

2. API Interaction: Through an API, external applications can interact with
the detection pipeline, enabling automated workflows, batch processing of
multiple scans, and integration into electronic health record (EHR) systems.
Other benefits and features are not further discussed here.

3. Preprocessing: The application initiates the preprocessing stage that includes
normalization of the image intensities, alignment of the images to a stan-
dard anatomical orientation, and resampling to ensure consistent resolution
across different scans, as required by the different segmentation models.

4. Detection and Localization: The preprocessed images are then supplied into
the PDAC detection processing chain and subsequent models (Figure 3.7).
The models identify and localize potential pancreatic tumors by analyzing
the secondary diagnostic signs and primary tumor characteristics.

5. Segmentation: The detected tumor regions are segmented and converted to
their original resolution. This high-resolution segmentation preserves the
details necessary for accurate diagnosis and treatment planning, providing
a clear visualization of the tumor boundaries.

6. Tumor Scoring: The application calculates a tumor score based on the detected
regions. This score reflects the likelihood of the current CT scan containing
cancerous voxels. Guidance is provided on what is considered a tumor-
positive case or tumor-negative case, based on the statistical results of the
processing chain on the validation dataset.

7. Result Presentation: Finally, the application presents the results in the web
interface, or as a response from the API. This report includes the tumor score,
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detailed segmentation maps of all the segmented organs and the uncertainty
maps computed from the model ensembles.

The web application ensures that the entire detection pipeline is automated,
from image upload to result generation, thereby minimizing the need for manual
intervention and reducing the potential for human error.

3.5.7 Segmentation results of secondary features
The segmentation accuracy of the pancreas segmentation model, as well as the
segmentation models for bile duct and pancreatic duct segmentation, are assessed
using the DSC metric. The fine pancreas segmentation models achieve a mean
DSC of 0.86±0.05 on the proprietary test set and 0.88±0.03 on the MD dataset
(Table 3.7). For bile duct segmentation, a multi-class model obtains a mean DSC of
0.61±0.22 for the common bile duct and 0.49±0.25 for the pancreatic duct on our
proprietary test set, while it achieves a mean DSC of 0.67±0.19 and 0.51±0.19 on
the common bile duct and pancreatic duct for the MD dataset, respectively. The
models perform consistently between the proprietary test set and the public MD
dataset.

Table 3.7 Results obtained and evaluated using the DICE Similarity Coefficient (DSC) for the
proprietary test set and the Medical Decathlon (MD) Dataset. (“not ann.” means that the cases
where the ductal structures were small and not annotated were removed from the evaluation).

Anatomical Structure Proprietary test set Medical Decathlon Dataset

Pancreas 0.86 ± 0.05 0.88 ± 0.03
Common bile duct 0.61 ± 0.22 0.67 ± 0.19
Pancreatic duct 0.49 ± 0.25 0.52 ± 0.19
Common bile duct (not ann.) 0.63 ± 0.18 0.69 ± 0.14
Pancreatic duct (not ann.) 0.60 ± 0.11 0.55 ± 0.13

3.5.8 Tumor detection results
All models have been applied to the proprietary and the MD dataset for testing.
The detection models are analyzed using the ground-truth annotations (pancreas
and ducts) as input and in a fully automated manner, utilizing the predictions
from the preceding models as input. Employing the ground-truth annotations,
the tumor detection model demonstrates perfect accuracy in identifying all tu-
mors within the proprietary test set, resulting in a sensitivity of 1.00 (Table 3.8).
Utilizing the ground-truth segmentation maps, the model achieves a specificity
of 0.86 on the proprietary test set. Combining the three different models, further
improves the detection performance without false positive predictions, resulting
in a perfect sensitivity and specificity of unity. When applying the multi-stage
algorithm where the pancreas, common bile duct and pancreatic duct are auto-
matically segmented and provided to the tumor detection model, the specificity
drops to 0.64±0.15. However, combining the different models through an ensem-
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Table 3.8 Performance evaluation of the complete PDAC detection and segmentation framework
using the DICE Similarity Coefficient (DSC), Sensitivity, and Specificity on the proprietary test
dataset. Results are compared of the method using (1) manually annotated inputs of the pancreas
and bile ducts and (2) the method employing the automated segmentation of bile ducts and pancreas.
GT is ground truth.

Input type GT GT Predicted Predicted Predicted
Model type Individual Ensemble Individual Ensemble Ensemble

Data subset All All All All Tumors < 2 cm

Sensitivity 1.00 ± 0.00 1.00 1.00 ± 0.00 0.97 1.0

Specificity 0.86 ± 0.10 1.00 0.64 ± 0.15 1.00 1.0

Precision 0.94 ± 0.04 1.00 0.87 ± 0.05 1.00 1.0

F1 Score 0.97 ± 0.02 1.00 0.93 ± 0.03 0.98 1.0

Accuracy 0.96 ± 0.03 1.00 0.89 ± 0.05 0.98 1.0

ROC 0.96 ± 0.02 0.98 0.97 ± 0.03 0.99 0.98

Mean Dice 0.35 ± 0.04 0.37 0.31 ± 0.02 0.34 0.19 ± 0.24

ble, improves overall performance to a sensitivity of 0.97 (1 case missed) and a
specificity of 1.0. Overall, the models offer accurate tumor classification results
with an AUROC of 0.99 (depicted in Figure 3.9).

In a subanalysis of tumors smaller than 2 cm within the proprietary test set
(12 cases<2 cm vs. control set), the model achieves an impressive AUROC of 0.98.
However, it also records a much lower DSC of 0.19±0.24, which highlights the
challenge of accurately delineating these small tumors. Using the ground-truth
annotations and the multi-stage algorithm as inputs, the tumor detection model
demonstrates a perfect sensitivity of 1.00 within the MD test set in both instances
(Table 3.9). In addition, the model segmentation of the tumor records a mean DSC
of 0.37 in both the proprietary test set and the MD test set. Finally, we visualize
the predicted segmentation maps generated by the multi-stage algorithm in the
proprietary test set, to understand which aspects contribute to pancreatic tumor
detection and to offer insights into the algorithm performance in Figure 3.10.

Table 3.9 Evaluation using Sensitivity and the Mean DSC on the MD test dataset. Methods
are compared using manually annotated input of the pancreas and bile ducts and employing the
automated bile ducts and pancreas segmented by AI models.

Input type GT Input GT Input Predicted Input Predicted Input
Model type Individual Ensemble Individual Ensemble

Sensitivity 1.00 ± 0.00 1.00 1.00 ± 0.00 1.00

Mean DSC 0.37 ± 0.03 0.37 0.37 ± 0.01 0.37
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Figure 3.9 Area Under Receiver Operating Characteristic Curve (AUROC) of the full tumor
detection approach (ensemble) on the proprietary test set.

3.5.9 Discussion
This study presents accurate PDAC detection by employing a multi-stage deep
learning framework designed for detection on contrast-enhanced CT scans. Re-
cently, there has been a notable interest in segmentation for classification ap-
proaches, as it enables both cancer detection and localization of pancreatic can-
cer [53], [115], [131], [139], [168]–[171]. This work additionally indicates the value
of incorporating secondary features of pancreatic cancer such as a dilated bile
duct, to improve pancreatic tumor detection [53].

Pancreas: The proposed pancreas segmentation algorithm performs compa-
rably to SOTA models [172]–[174]. However, it sometimes produces irregular
boundaries around the pancreas, but this behaviour has also been recorded in
other algorithms from literature. For instance, Huang et al. [174] developed a semi-
automated DUNet tailored to capture the variable and irregular contours of the
pancreas, achieving a DSC of 87.25±3.27. Both methodologies, although highly
accurate, occasionally struggle with the pancreas’s inherent shape variations, ir-
regular boundaries and the ambiguity of the pancreatic structure in CT.

Bile ducts: The diagnostic usefulness of the framework is further enriched by
the integration of adjacent structural information, such as dilated pancreatic and
common bile ducts, which elucidates the relationship between these ducts and
tumors, where clinician are especially focusing on the bile duct. Considering
the ductal segmentation algorithm, despite achieving perfect sensitivity in bile
duct identification, the algorithm records a specificity of 0.4±0.067 due to false
positives, largely attributed to the smaller size of the pancreatic duct and lowering
the DSC values. These metrics indicate substantial variability, primarily because
small, sometimes barely visible ducts were not annotated, yet the models establish
proper visual segmentation of the structures in these regions.

External validation: Multiple studies have utilized supervised classification net-
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Figure 3.10 Predicted segmentation results of the proposed PDAC CAD system. The tumor is
depicted in red, pancreas in green, pancreatic duct in orange and common bile duct in blue. The
ground-truth tumor and PDAC prediction are depicted in consecutive columns. For this patient
case, the model achieves a high DICE score of 0.71 on an image from the proprietary test set.

works, resulting in accurate detection of PDAC and other types of pancreatic
cancer on CT scans [130], [133]–[135], [138], [175]. However, only a few studies
have externally validated their models, with just two studies utilizing the publicly
accessible MD dataset [133], [139] in combination with a tumor negative set, to
determine detection performance. Alves et al. [139] have introduced an automated
framework for PDAC detection, employing three nnU-Net [13] models that in ad-
dition to the pancreatic tumor, also predicts secondary features for tumor presence
evaluation. The authors have demonstrated the benefit of integrating anatomical
information and reported a notable AUROC of 0.91. Liu et al. [133] have devel-
oped a deep learning model utilizing a modified VGG network to differentiate
between pancreatic cancer tissue and non-cancerous tissue. Their model is also
evaluated using the MD dataset, achieving a sensitivity of 0.79 and specificity
of 0.84, resulting in a maximum AUROC of 0.92 at the patient level.
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Internal validation: By employing the ground-truth secondary-feature annota-
tions and segmentation maps from the multi-class algorithm, the tumor detection
model showcases exceptional sensitivity. It achieves a perfect sensitivity score
of 1.00 on the MSD test set and the internal proprietary test set. With an AUROC
of 0.99, the proposed method outperforms the state-of-the-art approaches, partic-
ularly in external validation on the MD dataset. This highlights the importance of
incorporating secondary tumor-indicative anatomical information and represents
a notable improvement in pancreatic tumor detection accuracy. Despite achieving
a mean DSC of 0.34, indicating limited tumor localization accuracy, our primary
focus is on identifying tumor presence and approximate location, rather than de-
lineation, given the significant benefits of early detection for patient survival [22],
[176], [177]. With the scan highlighted by the proposed method as containing
tumor and the additional approximate location of the PDAC, a follow-up segmen-
tation model can be employed to refine the segmentation.

Supplementary value: This method stands out for its integration of the secondary
features indicating tumor and evaluation of pertinent anatomy within a structured
workflow. Literature indicates that 5.4-–14% of pancreatic tumors present as com-
pletely iso-attenuating, making them indistinguishable from normal pancreatic
tissue [178]. Particularly in such cases, radiologists often rely on alternative pat-
terns suggesting malignant disease. Throughout the years, multiple studies have
consistently reported the presence of visible secondary features, prior to actual
diagnosis [119], [121]. For instance, Kang et al. [116] found that 88% of the cases
exhibited such secondary signs. Additionally, imaging has revealed indicative
changes associated with PDAC up to 18 months prior to diagnosis in 50% of the
patients [120], [122]. The multi-stage detection framework integrates detailed duct
and pancreas segmentation maps with CT scans, thereby enabling it to establish
connections between these secondary features and tumor presence. Furthermore,
it provides valuable insights into the model performance which contributes to
solving concerns regarding result explainability. This study offers a quantitative
assessment of PDAC detection performance. However, quantifying the diagnostic
value of information derived from the segmentation of secondary features remains
a challenging aspect.

3.5.10 Limitations
The study exhibits several limitations that are briefly acknowledged below. Firstly,
the models are trained on a relatively small dataset that primarily include CT scans
from patients with pancreatic head cancer, contrasting against normal pancreatic
scans. Consequently, the models have not been exposed to a diverse array of
pathological conditions, including other neoplastic disorders or tumors situated
in varying locations within the pancreas. This lack of variability may potentially
limit the generalization of the model to other forms of pancreatic diseases.

Secondly, the employed dataset is derived from a specifically selected cohort,
which does not accurately reflect the broader demographic and disease prevalence
found in the general population [179]. This selection bias may lead to a skewed
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distribution, affecting the model performance when applied to a more diverse,
real-world clinical setting. To address this limitation, there is a clear need for a
prospective study that evaluates the model effectiveness across various target
populations to ensure its clinical feasibility and robustness.

Lastly, the external validation of the tumor detection models has been per-
formed using the publicly available MD dataset. While this dataset is a valuable
resource, it predominantly comprises cases with advanced-stage pancreatic can-
cer, characterized by larger tumor sizes and the frequent presence of metal stents,
which may introduce bias in the performance assessment of the models. More-
over, the MD dataset exclusively contains tumor-positive cases, leading to the
absence of specificity metrics in this study since, tumor-negative scenarios are not
tested. Future research endeavors should aim to investigate the model specificity
by incorporating a balanced representation of tumor-negative cases, to provide a
comprehensive evaluation of its diagnostic accuracy.

3.6 Challenges and future directions in PDAC detection
Deep learning-based CAD systems have grown as a high-potential technology that
will shape the future of medical healthcare. Deep learning-based image processing
techniques such as Convolutional Neural Networks [180], Vision Transformers [8]
and Diffusion models [15] have rapidly revolutionized the standard performance
expected of automated systems. However, the translation of effective techniques
into clinical deployment presents a new opportunity for clinical studies, machine
learning research, and human-computer interaction designs.

Considering the current limited successful deployment of deep learning-based
CAD systems in the clinical practice, it is considered that the following aspects are
becoming increasingly important for further progression of automated pancreatic
cancer detection.

First, training deep learning algorithms for difficult tasks requires large and
diverse amounts of high-quality labeled data. However, due to the relatively low
prevalence of pancreatic cancer, this is one of the biggest hurdles hampering the
development of data-driven algorithms. The first indications of the potential of AI
applications are clearly visible in retrospective research on small, homogeneous
datasets, where these systems demonstrate impressive results in detection of
pancreatic tumors. However, datasets are the primary drivers of these algorithms
and collaboration and data sharing between expert centers for pancreatic surgery
would provide the opportunity to deal with the scarcity of high-quality labeled
datasets. Section B.1 provides further discussion on this topic with a focus on data
representations, biases and confounders.

Second, for proper evaluation of the model, the results should be presented
transparently, following clear standards. To avoid misconceptions, it should be
clear which metrics are used to evaluate the performance of the model. Metrics
such as accuracy, sensitivity, specificity and area under the receiver operating
characteristics should be described [181], [182]. Therefore, clear guidelines can
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be used, following transparent reporting of a multi-variable prediction model for
individual prognosis or diagnosis (TRIPOD) [183], [184]. Additionally, a targeted
calculation of a sample size of the test set, as proposed by Riley et al. [185], which
is needed to accurately determine the quality of early-stage algorithms, could
facilitate unbiased evaluation.

Third, for an algorithm to be of added value in clinical practice, aspects such
as reliability, uncertainty and robustness against variations will become increas-
ingly important. This implies novel approaches that require a strong collaboration
between clinician researchers and machine learning experts. While detection of
cancer is the first essential step, follow-up tasks such as tumor resection planning
require extremely detailed segmentation maps of the tumor and surrounding
anatomical structures. Current existing approaches do not yet meet this high-
accuracy requirement. The current research trend is to design better models to
adhere to these shortcomings, while it is possible that there will always be edge
cases unaccounted for or different opinions on a correct segmentation. A possible
solution to bridge the gap between what is technically possible and clinically
necessary is interactive AI (IAI), where a user can exploit AI with additional in-
put. By implementing IAI, the pattern recognition abilities of AI and the domain
knowledge of the clinician can be combined, resulting in more accurate and robust
results [186]. This could enable clinicians to achieve highly accurate annotations
of the structures of interest and can improve effectiveness and implementation of
AI algorithms in clinical practice.

Finally, the development and implementation of AI-based CAD systems re-
quires an interdisciplinary approach between technical and medical partners. A
strong collaboration between medical doctors and engineers is necessary to create
a common understanding of the possibilities and limitations of systems. Sup-
ported by findings in a study of diabetic retinopathy screening [187], it has already
been shown that humans assisted by AI performed better than either standalone
AI or the independent clinician. Understanding human-algorithm interfacing and
the importance of human-centered AI will be critical in future adoption of AI appli-
cations. The AI model operation, as well as the user-interface (UI) through which
the physician and AI interact, should be optimized for this team performance.
Choices in the AI development and UI design influence how physicians work
with AI to leverage the collective intelligence of the physician and the AI [188].

3.7 Conclusions
This chapter has explored Deep learning-based CADe for PDAC detection. The
key to the proposed framework is the integration of external, tumor-indicative
features to enhance the performance of PDAC CAD systems. The method incor-
porates clinically-relevant secondary features into a 3D U-Net, which processes
CT scans alongside segmentation maps of the pancreas, pancreatic duct, and com-
mon bile duct to segment PDAC more reliably. This approach not only achieves
a high detection sensitivity (99±2%) and specificity (99%), but also provides in-
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sights into tumor locations, maintaining robust performance across both a small
prospectively collected dataset and the Medical Decathlon dataset.

A key finding of the research in this chapter is that the PDAC detection frame-
work can be fully automated, including the localization of the pancreas, detailed
pancreas segmentation, detailed bile duct segmentation maps and ultimately ac-
curate tumor detection. The experiments indicate that the same high sensitivity
and specificity on an independent test set can be obtained, even with the fully
automated framework. The complete setup has been rigorously tested on a larger,
prospectively collected proprietary dataset and the publicly accessible Medical
Decathlon dataset.

The value of developing an additional dataset for more detailed training and
testing has proven a high importance, despite its proprietary nature. The joint
development of this dataset incurred close collaboration between clinical and
technical experts and has improved the discussion on the relevance of primary
and secondary tumor-indicative features.

To increase further clinical relevance, the proposed framework with its promis-
ing results needs to be corroborated through extensive, multi-center studies to
ensure its reliability and effectiveness across various clinical environments. This
validation is essential to confirm the robustness of the models in diverse settings
and to substantiate its role in revolutionizing the diagnosis and treatment of pan-
creatic cancer. On the longer term, the use of deep learning-based algorithms for
the early detection of pancreatic cancer holds the potential to substantially in-
crease the number of patients who are eligible for curative treatments, thereby
improving their chances of survival.

In the next chapter, the research on a segmentation framework generalizes
from the specific PDAC case and focuses more on quantifying uncertainty in the
segmentation of ambiguous structures in medical imaging. This discussions in this
chapter already indicate substantial uncertainties appear typically at the bound-
aries of organs and withing complex structures like tumor growths. Quantifying
this uncertainty can provide vital information to clinicians in curative treatment
planning and strategies.
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Uncertaintyquantification in
medical image segmentation

4.1 Introduction
Medical image segmentation is a crucial step in diagnostic radiology that involves
delineating anatomical structures from the acquired image. Clinicians employ
detailed segmentation of anatomical structures in medical images to enhance their
diagnostic accuracy and the treatment planning by precisely localizing abnor-
malities, measuring volumes, and assessing functional parameters. Segmentation
guides surgical navigation and radiotherapy, thereby ensuring precise targeting
while minimizing harm to healthy tissue. The segmentation facilitates medical
research by enabling anatomical studies and the development of accurate models
for simulation and training. Additionally, segmentation improves communication
through clear visualizations and supports the development of automated analysis
tools, thereby increasing efficiency and consistency in clinical practice.

Despite its numerous benefits, the segmentation process in medical imaging
faces several limitations. Manual segmentation is time-consuming and highly
dependent on the clinician’s expertise, leading to variability in results. Automated
deep learning-based segmentation methods, although being faster, often struggle
with the complexity and variability of human anatomy, resulting in inaccuracies,
especially in cases of abnormal or pathological anatomy. The quality of the seg-
mentation can also be affected by the resolution and noise levels of the imaging
modality, as well as the presence of artifacts.

As a result of the considerable advances in machine learning research over the
past decade, computer-aided diagnostics (CADx) using deep learning is rapidly
gaining attention. Convolutional neural network (CNN)-based approaches have
been adopted in a large number of CADx applications and especially in semantic
segmentation. In this approach, the objects of interest are localized by assigning
class probabilities to all pixels of the image. In the medical domain, and especially
in the context of lesion segmentation, the exact edges or borders of these lesions
are not always readily clearly defined (even for physicians) and ground-truth
annotations are associated with a high interobserver variability. Hence, in the case
of multiple assessors, clinicians may disagree on the boundaries of the localized
lesions, based on their understanding of the surrounding anatomy. Furthermore,
it is often impossible to define exact tumor boundaries in medical imagery, as
registration with histopathology is not applicable. However, the exact edges or
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borders of these areas of interests often play a critical role in the diagnostic pro-
cess. For example, when determining decisions on surgery for a patient or the
surgical planning, knowledge about the invasion of a tumor into local anatomical
structures is crucial. Generally, the above discussion indicates that CADx semantic
segmentation models suffer from the variable imaging quality, the limited capa-
bilities of the model architectures or lack of sufficient training data (to name a few
aspects), all of which can introduce various sources of ambiguity and uncertainty.
Thus, multiple forms of uncertainties come into play when employing semantic
segmentation-based approaches for CADx. As such, accurately quantifying these
uncertainties have become an important factor in CADx. Specialized doctors pro-
vide ground-truth segmentation maps for models to be trained, based on their
knowledge and experience. When this is done by multiple individuals per im-
age, often discrepancies in the annotations arise, resulting in ambiguities in the
ground-truth labels.

In the transition towards more automated and assistive systems using ad-
vanced computer vision techniques, the role of learning-based methods in medi-
cal image segmentation has become significantly pronounced. However, together
with this transition, a critical challenge arises of managing uncertainties inherently
occurring in the processing steps. These uncertainties can substantially affect the
reliability of CADx-based diagnostic outcomes. These uncertainties in machine
learning can be broadly classified into two categories: epistemic uncertainty and
aleatoric uncertainty (introduced in Chapter 2.3). Similarly, these uncertainties are
present in deep learning-based segmentation models. The epistemic uncertainty
is the result of lack of knowledge about the model parameters and the underlying
data distribution. The aleatoric uncertainty is due to limitations in the image acqui-
sition process or, as mentioned above, as introduced with ambiguous ground-truth
annotations.

The purpose of this chapter is to address the ambiguity present in medical
image segmentation tasks. An optimal segmentation architecture is considered
where aleatoric uncertainty can be expressed explicitly. Expressing this uncer-
tainty accurately may contribute to minimizing interventions and maximizing
automation in the processing. These considerations lead to the following research
questions.

• A significant challenge exists of dealing with variability in clinical annota-
tions and intrinsic noise in imaging data when training deep learning-based
models. How can we accurately segment structures under ambiguous ground-
truths, while aiming to capture and express the aleatoric uncertainty?

• The Probabilistic U-Net (PU-Net) is an effective method for modeling the
aleatoric uncertainty. However, restricting the modeled distribution to be
normally distributed limits its accuracy. Does augmenting the strictly Gaussian
posterior in the PU-Net with Normalizing Flows improve aleatoric uncertainty
quantification?
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• In transitioning from 2D to 3D image segmentation, the (PU-Net) model is
expected to capture spatial context more effectively, potentially leading to
higher consistency and an increased accuracy of segmentation outcomes.
Does extending the PU-Net to 3D processing and modeling improve the consistency,
efficiency and accuracy in aleatoric uncertainty quantification?

This chapter discusses uncertainty and its potential impact in medical image
segmentation. The Probabilistic U-Net [189] has previously been developed for
segmenting ambiguous structures, however, the approach and the architecture
have several limitations that could encumber its accuracy. The chapter details an
improved model that specifically allows for a more flexible posterior distribution
and, as such, captures the aleatoric uncertainty accurately. These improvements
are then extended to 3D processing and modeling, utilizing information from
the full 3D data volume to more accurately capture and express the segmenta-
tion aleatoric uncertainty. This inquiry not only advances the field of diagnostic
radiology, but also contributes to the overarching objectives of uncertainty and
interobserver variability modeling in the ambiguous medical imaging domain to
ultimately improve patient-specific interventions.

4.2 Related work
4.2.1 Types of uncertainty in medical image segmentation
Uncertainty in machine learning can be broadly classified into two categories:
aleatoric uncertainty and epistemic uncertainty (introduced in Chapter 2.3). Simi-
larly, these uncertainties are present in deep learning-based segmentation models.

4.2.1.A Epistemic uncertainty
Epistemic uncertainty, or model uncertainty, arises from the lack of knowledge
about the model parameters and the underlying data distribution. This type of un-
certainty is reducible and can be mitigated by acquiring more data and improving
model architecture and training processes [190]. In the context of medical imaging,
epistemic uncertainty reflects the limitations of the segmentation model itself,
such as inadequate training data or sub-optimal model complexity. Epistemic un-
certainty affects the generalization capability of segmentation models. Techniques
such as Bayesian neural networks, ensemble methods, and active learning are
employed to quantify and showcase the epistemic uncertainty, thereby improving
model robustness [102].

In the case of multi/single-assessor annotated data, the epistemic uncertainty
stems from the preferences, experiences, knowledge (or lack thereof) and other
biases of the multiple/single assessors specifically. This epistemic uncertainty
from the assessor(s) manifests into a different type of uncertainty when providing
annotations and training a learning-based model on that data.

79



C
hapter4

4 . U N C E R TA I N T Y I N M E D I C A L I M A G E S E G M E N TAT I O N

4.2.1.B Aleatoric uncertainty
Aleatoric uncertainty, also known as statistical or data uncertainty, arises from
the inherent noise and variability in the data. In medical imaging, this type of
uncertainty is often due to factors such as low-resolution images, poor contrast be-
tween structures, motion artifacts and, importantly, inter-observer variability [191].
Aleatoric uncertainty is irreducible and cannot be mitigated by acquiring more
data. Instead, it can be addressed through robust statistical modeling and noise-
resistant algorithms.

Aleatoric uncertainty significantly impacts the performance of segmentation
models. For instance, in the presence of high noise levels or low-contrast regions,
the model predictions become less reliable. A segmentation model should show
increased uncertainty levels under such conditions to indicate which part of the
segmentation is less reliable or needs to be handed over to a clinical expert for
evaluation. Addressing aleatoric uncertainty involves techniques such as proba-
bilistic modeling and leveraging advanced imaging modalities, to enhance image
quality [192].

Assessor’s epistemic uncertainty can manifest into aleatoric uncertainty. Due
to the inherent ambiguity that exists in the imaging data, clinicians annotate the
structures of interest following their own experience (clinician’s epistemic uncer-
tainty) and available time. Different assessors could have different opinions and
invest different amounts of time in annotating a target structure, resulting in multi-
ple plausible annotations. Training supervised deep learning-based segmentation
models then encounter multiple ground truths.

The intersection of these uncertainties in deep learning-based medical image
segmentation demands a robust framework that not only acknowledges, but also
quantifies or mitigates these uncertainties. Quantifying uncertainty in segmen-
tation models can lead to more transparent, reliable, and interpretable tools. For
instance, understanding the degree of uncertainty associated with a segmented
tumor boundary can influence clinical decisions.

4.2.2 Methods for quantifying uncertainties in image segmentation
Several methods have been proposed to quantify uncertainties in medical image
segmentation. Many of the methods introduced Chapter 2.3 in an image clas-
sification context, also extends to segmentation applications. Notably, Kendall
and Gal [51] presented some of the first research to capture uncertainty and in-
troduced a unified framework based on Bayesian deep learning. The framework
distinguishes between the types of uncertainty, where aleatoric uncertainty is cap-
tured through model output variance, while epistemic uncertainty is estimated
via the model weight distributions. Since its inception, many methods have been
proposed to capture the segmentation uncertainties either more accurately or ef-
ficiently. In recent work by Zou et al. [193], an overview of these methods along
with their applications are highlighted.

80



C
ha

pt
er

4

4.2. Related work

4.2.3 Probabilistic U-Net for segmenting ambiguous images
The probabilistic U-Net (PU-Net) [189] is a method for segmenting ambiguous
images which significantly advances the field of medical image analysis, by ad-
dressing the challenge of inherent ambiguities in image segmentation tasks. The
core of the contribution lies in the development of a generative model that inte-
grates the strengths of the U-Net [194] with the probabilistic modeling capabilities
of a conditional Variational Autoencoder (cVAE) [195]. The U-Net serves as a
powerful encoder-decoder network that processes image data to produce object
features, while the cVAE captures the distribution of possible segmentation out-
puts that account for the inherent ambiguities. Figure 4.1 depicts the training
and test stages of the complete model. The arrows represent the flow of oper-
ations, blue blocks are feature maps and the heatmap (in grey) represents the
probability distribution in the low-dimensional latent space RN (e.g., N=6 in the
experiments). For each forward-pass of the network, one sample z from RN is
drawn and combined with the image features to predict one segmentation mask.
The green block shows an N -channel feature map resulting from broadcasting
sample z. The number of feature map blocks depicted in the figure is reduced for
clarity of presentation.

Figure 4.1 Diagram of the Probabilistic U-Net. (a) Test-time sampling process. (b) Training process
illustrated for 1 training example. The image is based on the original paper [189].

There are several attributes that set the PU-Net apart from prior work.

• Explicit density modeling: The uncertainty is captured by a down-sampled
axis-aligned Gaussian prior that is updated through the KL divergence of
the posterior during training.

• Latent space sampling: The model samples from this low-dimensional latent
representations that captures the distribution of segmentation hypotheses.
This sampling is guided by a “prior net” that predicts the distribution of
latent variables conditioned on the input image, enabling the generation of
diverse segmentation hypotheses.
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• Efficient hypothesis generation: By integrating sampling mechanisms directly
into the network, the model can efficiently produce multiple plausible seg-
mentation masks for a single input, which forms a significant improvement
over traditional deterministic methods.

The model is employed to segment ambiguous structures such as lung abnor-
malities from CT images (LIDC-IDRI dataset [196]) and in urban scenes (Cityscapes
dataset [197]). These datasets will be discussed in more detail in Section 4.3.2,
4.4.3 and Appendix C.1. The performance is evaluated using intersection over
union (IoU) and a novel application of the squared generalized energy distance (GED).
These metrics help quantify how well the model’s output distribution matches
the distribution of ground-truth segmentation masks, with a particular focus on
capturing both common and rare segmentation variants. The model is shown
to outperform existing methods like Bayesian SegNet [198], various ensemble
approaches and methods employing multiple decoders (M-Heads).

In medical diagnostics, ambiguities in image data can lead to vastly different
treatment decisions. By providing multiple plausible segmentation masks, the
model allows clinicians to consider a range of possible diagnoses or further testing
strategies. The succeeding chapter in this thesis delves into one such use case.
The model can be used to suggest additional diagnostic tests that may resolve
ambiguities, thereby supporting more informed clinical decision-making.

4.2.4 Limitations of the literature
While the PU-Net model demonstrates impressive capabilities, the authors also
acknowledge certain limitations that pave the way for improvements in model-
based segmentation.

• Complexity of ambiguities: The model is currently tailored to scenarios where
ambiguities are known and captured through the annotated labels. Extend-
ing this approach to scenarios with unknown or unmodeled ambiguities
may enhance the model applicability.

• Accuracy: The model handles multiple hypotheses well, however, the ex-
tent thereof can be improved. Various architectural aspects suggest that
improved performance can be obtained with adjustments to the overall
model.

• Efficiency: The current implementation of the Probabilistic U-Net utilizes
a 2D approach, which may not fully leverage the information available in
medical applications where data typically come from 3D volumes. Extend-
ing the model to handle 3D data can significantly improve the consistency
and efficiency of uncertainty quantification, making use of the rich spatial
information inherent in 3D medical scans.

• Scope: While the Probabilistic U-Net is adept at segmenting ambiguous struc-
tures, its approach to uncertainty is primarily confined to generating multi-
ple plausible segmentation masks rather than quantitatively capturing and
representing the underlying uncertainty in those masks. Follow-up work
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should attempt to explain what the ambiguity represents.

Overall, the probabilistic U-Net effectively demonstrates how the integration
of probabilistic generative models with deep learning segmentation architectures
can address significant challenges in segmenting ambiguous tasks. The method
not only advances the state-of-the-art in medical image segmentation, but also
opens up new avenues for research in handling ambiguities in other domains of
computer vision and medical imaging. The above-listed limitations are addressed
in the succeeding sections on probabilistic segmentation.

4.3 Improving aleatoric uncertainty quantification in
multi-annotated medical image segmentation with NFs in
2D images

In medical image analysis, automated segmentation results are crucial for vital
decision-making, making it essential to quantify the uncertainty in the segmenta-
tion output. In the supervised multi-annotation setting (introduced under Point B
in Section 4.2.1), compelling attempts have been made in quantifying the uncer-
tainty in image segmentation architectures. By using a probabilistic segmentation
model, this work attempts to learn a distribution of possible annotations. However,
existing work in this field restricts these learnt densities to be strictly Gaussian. It is
important to enable expressiveness of the probability distributions to sufficiently
capture the variability in the data. In this multi-assessor settings, the adoption of
rich and multi-modal distributions is desired.

In this work it is shown that by using invertible bijections, also known as Nor-
malizing Flows (NFs), we can obtain more expressive distributions to adequately
deal with the disagreement in the ground-truth information. The Probabilistic U-
Net (PU-Net) [189] is employed as the base model and subsequently improved, by
adding a planar and radial flow to render a more expressively learnt posterior dis-
tribution. This enables the learnt densities to be more complex and facilitate more
accurate modeling for uncertainty quantification. The qualitative as well as quan-
titative evaluations show a clear improvement on two large public datasets: the
multi-annotated and LIDC-IDRI and single-annotated Kvasir-SEG segmentation
datasets. The improvements are mostly apparent in the quantification of aleatoric
uncertainty and the increased predictive performance of up to 14%. This result
strongly indicates that a more flexible density model should be seriously con-
sidered in architectures that attempt to capture segmentation ambiguity through
density modeling.

Additional background and motivation: Selvan et al. [199] used an NF on
the posterior of a cVAE-like segmentation model and showed that this augmen-
tation increases sample diversity. The increased sample diversity resulted in a
better score on the GED metric and a slight decrease in DSC score. The authors
reported significant gains in performance. However, it is argued that this claim
requires more evidence to confirm this positive effect, such as training with K-fold
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cross-validation and evaluating confirmation using additional metrics. Additional
insight into the reasons for the obtained improvements are not provided and
critical details of the experiments are missing, such as the number of samples
used for the GED evaluation. Shi Hu et al. [200] showed how this ambiguity can
be interpreted as uncertainty. This work aims to provide a more comprehensive
argument and show clear steps towards improving the quantification of aleatoric
uncertainty.

This section delves into enhancing aleatoric uncertainty quantification in medi-
cal image segmentation using normalizing flows. It is shown that the segmentation
ambiguity can be interpreted as aleatoric uncertainty and that this uncertainty
can also be captured in single-assessor settings. The proposed model architecture
and integration of NFs into the segmentation framework are presented in Sec-
tion 4.3.1. The datasets used, baseline experiments conducted and training details
are described to establish a comparative foundation for the proposed approach
(Section 4.3.2 - 4.3.4). Finally, the results of the experiments are presented and
improvements in aleatoric uncertainty quantification (Section 4.3.5) are discussed.
This model section concludes with insights gained from this work in Section 4.3.6.

4.3.1 2D Model architecture
The proposed method builds on the PU-Net extended with an NF, as is shown in
Figure 4.2. A key element of the architecture is the posterior network Q, which
attempts to encapsulate the distribution of possible segmentations, conditioned
on the input image X and ground truth S in the base distribution. The flexibility
of the posterior is enhanced through the use of an NF, which warps it into a more
complex distribution.

During training, a sample from the posterior distribution (Q) is combined with
the features from the reconstruction network (U-Net), to generate a new segmen-
tation. The prior P is updated with the evidence lower bound (ELBO [47]), which
is based on two components: (1) the KL divergence between the distributions Q
and P , and (2) the reconstruction loss between the predicted and ground-truth
segmentation. The use of NFs is motivated by the fact that a Gaussian distribution
is too limited to fully model the input-conditional latent distribution of annota-
tions. An NF can introduce complexity to Q, e.g. multi-modality, in order to more
accurately describe the characteristics of this relationship.

The training objective of the PU-Net extends on the standard ELBO (Sec-
tion 2.2.1) and is defined as

L = −Eqϕ(z|s,x)
[
log p(s|z,x)

]
+KL

(
qϕ(z|s,x) || pψ(z|x)

)
, (4.1)

where the latent sample z from the posterior distribution is conditioned on the
input image x, and ground-truth segmentation s. We proceed by extending the
PU-Net training objective and explain the associated parameters in detail. To
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Figure 4.2 Diagram of the PU-Net with an NF posterior. The names of the distributions align with
the textual descriptions.

this end, we make use of the NF-likelihood objective (see Section 2.2.2.B) with
transformation f : R 7→ R to define the posterior as

log q(z|s,x) = log q0(z0|s,x)−
K∑
i=1

log

(∣∣∣∣det dfi
dzi−1

∣∣∣∣) , (4.2)

to obtain the final objective

L =− Eqϕ(z0|s,x)
[
log p(s|z,x)

]
+KL

(
qϕ(z0|s,x) || pψ(z|x)

)
− Eqϕ(z0|s,x)

[
K∑
i=1

log

(∣∣∣∣det dfi
dzi−1

∣∣∣∣)
]
.

(4.3)

The input-dependent context vector c, is used to obtain the posterior flow param-
eters. During training, the posterior flow is used to capture the data distribution
with the posterior network Q(µ,σ, c|X,S), followed by sampling thereof to re-
construct the segmentation predictions Y. At the same time, a prior network
P (µ,σ|X) only conditioned on the input image, is also trained through constrain-
ing its KL divergence with the posterior distribution. The first term in Eq. (4.3)
entails the reconstruction loss, in this case the cross-entropy function as mentioned
earlier. At test time, the prior network produces the latent samples to construct
the segmentation predictions.
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4.3.2 Data and 2D baseline experiments
In this work, extensive experimental validation is performed using the Vanilla
Probabilistic U-Net with 2-step or 4-step planar-flow and radial-flow variants
on processed versions of the LIDC-IDRI (LIDC) [196] and the Kvasir-SEG [201]
datasets. The preprocessed LIDC dataset [199] transforms the 1,018 thoracic CT
scans with four assessors into 15,096 patches of 128×128-pixels, according to prior
work [189], [202]. Each image has 4 annotations. The Kvasir-SEG dataset con-
tains 1,000 polyp images of the gastrointestinal tract from the original Kvasir
dataset [203]. The images are resized to be 128×128 pixels and converted to 8-bit
depth grayscale images. Example images of the datasets can be found in Ap-
pendix C.1. The employed NFs include the planar flow, which conforms to related
work [199], [204] and additionally, we experiment with the radial flow. These flows
are often chosen because they are computationally inexpensive transformations
that possess the ability to expand and contract the distributions along a direction
(planar) or around a specific point (radial) and is fully discussed in Chapter 2.

4.3.3 Performance evaluation on 2D experiments
For evaluation, the Squared Generalized Energy Distance (GED) (also known as the
Maximum Mean Discrepancy) is considered as a metric. This metric is defined as

D2
GED(Ppr, Pout) = 2E [d(S,Y)]− E [d(S,S′)]− E [d(Y,Y′)] , (4.4)

where Y, Y′ and S, S′ are independent samples from the predicted distribution
and ground-truth distributions Ppr and Pgt, respectively. Here, parameter d is
a distance metric, in this case, unity minus the 2D Intersection over Union (1-
IoU). When the predictions poorly match the ground truth, the GED is prone to
simply reward diversity in samples, instead of accurate predictions because the
influence of the E [d(Y,Y′)] term becomes dominant. Therefore, we also evaluate
the Hungarian-matched IoU, using the average IoU of all matched pairs for the
LIDC dataset. We duplicate the ground-truth set, hence matching it with the
sample size. Since the Kvasir-SEG dataset only has a single annotation per sample,
we simply take the average IoU from all samples. Furthermore, when the model
correctly predicts the absence of a lesion (i.e. no segmentation), the denominator of
the metric is zero and thus the IoU becomes undefined. In previous work, the mean
excluding undefined elements was taken over all the samples. However, since this
is a correct prediction, we award this with full score (IoU= 1) and compare this
approach with the method of excluding undefined elements for the GED.

To qualitatively depict the model performance, we calculate the mean and
standard deviation with Monte-Carlo simulations (i.e. sampling reconstructions
from the prior). All evaluations in this work are based on 16 samples to strike a
right balance between sufficient samples and a justifiable approximation, while
maintaining minimal computational time.

For quantitative evaluation, the squared Generalized Energy Distance (GED) is
adopted, as this metric is also used in previous work on this topic. We hypothesize
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that this commonly used metric is prone to some biases, such that it rewards
sample diversity rather than predictive accuracy. Therefore, we also evaluate on
the average and Hungarian-matched IoU1 for the single/multi-annotated data,
respectively, as is also done by Kohl et al. [205].

To qualitatively evaluate the ability to model the intervariability of the anno-
tations, we present the means and standard deviations of the segmentation sam-
ples reconstructed from the model. In this work, we exploit of the multi/single-
annotated LIDC-IDRI (LIDC) and Kvasir-SEG datasets, thereby handling limited
dataset size and giving insights on the effects of the complex posterior on hard-to-
fit datasets.

4.3.4 Training details
The training procedure entails tenfold cross-validation using a learning rate of
10−4 with early stopping on the validation loss, based on a patience of 20 epochs.
The batch size is chosen to be 96 and 32 for the LIDC and the Kvasir-SEG dataset,
respectively. The number of dimensions in latent space is set to L=6. The dataset
is split according to the ratio of 90/10 (train+validation/test) and is evaluated on
the test set using the proposed metrics. All experiments are executed on an 11-GB
RTX 2080TI GPU.

4.3.5 Results and discussion
Quantitative evaluation: The models are referred to by their posterior structure,
either unaugmented (Vanilla) or with their n-step Normalizing Flow (NF). The
results of the conducted experiments are presented in Table 4.1. In line with lit-
erature, it is shown that the GED improves with the addition of an NF. This
hypothesis is tested using both a planar and radial NF and it is observed that both
have a similar effect. Furthermore, both the average and Hungarian-matched IoU
improve with the NF. It is seen that the 2-step radial (2-radial) NF is slightly better
than other models for the LIDC dataset, while for the Kvasir-SEG dataset the pla-
nar models tend to perform better. The original PU-Net introduces the capturing
of the variability of annotations into a Gaussian model. However, this distribution
is not expressive enough to efficiently capture this variability. The increase in GED
and average IoU performance from the experiments confirm the hypothesis that
applying NF to the posterior distribution of the PU-Net improves the accuracy of
the probabilistic segmentation. This improvement occurs because the posterior
becomes more flexible and can thus provide more meaningful updates to the prior
distribution.

Including/excluding correct empty predictions does not result in a significant
difference in the metric value when comparing the Vanilla models with the poste-
rior NF models. The results show that the choice in the NF has minimal impact on
the performance and suggest practitioners to experiment with both NFs. Another
publication in literature [199] has experimented with more complex posteriors

1This way of matching checks all possible combinations between two sample sets.
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such as GLOW [206], leading to no additional performance improvement. In the
conducted research, we have found that even a 4-step planar or radial NF (which
are much simpler in nature) can already be too complex for our datasets, yield-
ing no additional performance. A possible explanation is that the variance in
annotations captured in the posterior distribution only requires a complexity that
manifests from two NF steps. This degree of complexity is then most efficient
for the updates of the prior distribution. More NF steps would then possibly in-
troduce unnecessary model complexity as well parameters for training, thereby
reducing the efficiency of the updates. Another explanation could be that an in-
crease in complexity of the posterior distribution does in fact model the annotation
variability in a better way. Nevertheless, not all information can be captured by the
prior, as it is still a Gaussian distribution. In this case, a two-step posterior is close
enough to a Gaussian for meaningful updates, yet complex enough to be preferred
over a Gaussian distribution. We consider that for similar problems, it is better
to adopt simple NFs with only a few steps. However, in cases where the varying
nature in the ground truth follows different characteristics, e.g. encompassing
non-linearities, the need for a more complex NF should also be considered.

Dataset Posterior GED ↓ IoU ↑
Excl. Incl. Avg. Hungarian

LIDC
Vanilla 0.33 ± 0.02 0.39 ± 0.02 — 0.57 ± 0.02

2-planar 0.29 ± 0.02 0.35 ± 0.03 — 0.57 ± 0.01
2-radial 0.29 ± 0.01 0.34 ± 0.01 — 0.58 ± 0.01
4-planar 0.30 ± 0.02 0.35 ± 0.04 — 0.57 ± 0.02
4-radial 0.29 ± 0.02 0.34 ± 0.03 — 0.57 ± 0.01

Kvasir-SEG
Vanilla 0.68 ± 0.18 0.69 ± 0.17 0.62 ± 0.07 —

2-planar 0.62 ± 0.05 0.63 ± 0.05 0.71 ± 0.01 —
2-radial 0.63 ± 0.03 0.64 ± 0.03 0.66 ± 0.06 —
4-planar 0.63 ± 0.06 0.67 ± 0.05 0.71 ± 0.04 —
4-radial 0.65 ± 0.04 0.67 ± 0.05 0.65 ± 0.07 —

Table 4.1 Test set evaluations with the GED and IoU metrics based on 16 samples. Further dis-
tinction in the GED is made on whether the correct empty predictions are included. The IoU is
evaluated with the Hungarian-matching algorithm and averaged with the LIDC and Kvasir-SEG
dataset, respectively.

The Vanilla, 2-planar and 2-radial models are compared by depicting their
GEDs based on sample size (Appendix C.2). As expected, the GED scores de-
crease as the number of samples increase. It is also evident that the variability in
metric evaluations is less for models with an NF posterior. The NF posteriors con-
sistently outperform the Vanilla PU-Net for the LIDC and Kvasir-SEG datasets.
Qualitative evaluation: The pixel-based mean and standard deviation based on
16 segmentation reconstructions from the validation set is shown in Figures 4.3
and 4.4. Ideally, it is expected to obtain minimal uncertainty at the center of the
segmentation, because annotations mostly agree on the center area in the em-
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Figure 4.3 Reconstructions of the LIDC test set.

Figure 4.4 Reconstructions of the Kvasir-SEG test set.

ployed datasets. This also implies that the mean of the center should be high
because of the agreement of the assessors. For both datasets, the means of the
sampled segmentation maps match well with the ground truths and have high
values in the center areas corresponding to good predictions. Furthermore, the
PU-Net without an NF shows uncertainty at both edges and segmentation centers.
In contrast, for all NF posterior PU-Net models, the uncertainty is mostly on the
edges alone. A high uncertainty around the edges is also expected, since at those
areas the assessors almost always disagree. From this, we can conclude that NF
posterior models are better at quantifying the aleatoric uncertainty of the data.
Even though there is no significant quantitative performance difference between
the NF models, there is a clearly distinguishable difference in the visual analysis.
In almost all cases, it can be observed that the planar flow is better than the radial
NF posterior in learning the agreement between the segmentation centers. The
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prior distribution is also investigated to determine if it captures the ambiguity
that exist in the input image. In Appendix C.3, the prior distribution variances
for different test set input images are shown. Qualitative observations reveal that
with increasing variance, the subjective assessment of the annotation difficulty
increases. This suggests the possibility of obtaining an indication of the uncer-
tainty in a test input image without sampling and evaluating the segmentation
reconstructions.

Follow-up work: The prior distribution is an area that needs to be further ex-
plored, since this is still assumed Gaussian. It is hypothesized that augmenting
the prior with an NF could result in further improvements. Future work should
also include an investigation into the correlation between the prior and segmenta-
tion variance. A limiting factor of the proposed model is the use of only a single
distribution. We consider that when using flexible distributions at multiple scales,
the overall model will further improve. Finally, the complete approach is based on
2D images, that in the case of the lung nodules, comes from 3D volumes. Utilizing
the full 3D information can yield additional performance improvements.

4.3.6 Conclusions on aleatoric uncertainty quantification in 2D images
Quantifying uncertainty in image segmentation is important for decision-making
in the medical domain. This work has proposed to use the broader concept of
NFs for modeling both single/multi-annotation data. This concept allows more
complex modeling of the aleatoric uncertainty in the image segmentation task.
Modeling of the posterior distribution by Gaussians is too restrictive to model
variability contained in the data. By augmenting the model posterior with a planar
NF or radial NF, up to 14% improvement in GED and 13% in IoU is obtained,
resulting in an improved quantification of the aleatoric uncertainty.

Density modeling with normalizing flows (NFs) should be explored in vari-
ous ambiguous contexts within the medical domain, as this approach is expected
to yield valuable insights for future research. This work reveals that significant
improvement can be obtained by only augmenting the posterior distribution with
NFs, whereas little-to-none investigations have been made into the effect of ad-
ditionally augmenting the prior distribution. These improvements are realized
with an approach based on 2D images derived from 3D volumes containing lung
nodules. Utilizing the full 3D data may further enhance performance which is
explored in the next section.

4.4 Probabilistic 3D segmentation for aleatoric uncertainty
quantification

Deep learning-based semantic segmentation methods using convolutional neural
networks have successfully been adopted as CAD methods for a wide range of
medical imaging modalities. While research has been conducted towards quanti-
fying the types of uncertainty occurring when using a segmentation model, most
of this work is limited to the quantification of the uncertainty in two-dimensional
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(2D) slices or images, where the latter often originate from a 3D volume such as in
CT and MRI. However, these approaches fail to exploit the rich 3D features that
may help in resolving ambiguities in the volume.

This study focuses on lung nodule segmentation as its primary application do-
main. Given the noisy nature of CT imaging, the low contrast of the nodules and
the significant variability in their locations, a substantial ambiguity is contained
within the data, which has to be considered by clinicians when segmenting lung
nodules. As in discussed 2D case, we employ the LIDC-IDRI lung CT dataset [196],
which makes use of multiple ground-truth annotations per lung nodule. As de-
scribed in Section 4.2.1, the epistemic uncertainty – i.e. preferences, experiences
and knowledge – of the assessors manifests into aleatoric uncertainty when pro-
viding annotations as ground-truth data. The different annotations per nodule
adds ambiguity during training of a segmentation network. During the annotation
process, the radiologist typically annotates on a single 2D plane of the 3D volume.
However, whilst annotating, full access to the other two views of the CT scan
are typically available on the same screen. This allows the assessor to correct the
annotation if it does not align with the other two views and as a result, the assessor
creates a true 3D annotation. In the LIDC-IDRI dataset (see Section 4.4.3) assessors
were allowed multiple rounds of annotation, thereby potentially increasing the
quality of annotations by exploiting the available full 3D information.

In recent research, various methods have been proposed to quantify the uncer-
tainty arising in segmentation models or resulting from images. One increasingly
popular approach is the Probabilistic U-Net [189], as proposed by Kohl et al. and
extensively discussed in Section 4.2.3. They propose combining a 2D U-Net with
a conditional variational autoencoder (VAE) capable of learning a distribution
over the possible annotations and ultimately construct a generative segmentation
model. The Probabilistic U-Net provides compelling results in resolving the ambi-
guity in an image. In Section 4.3 improvements to this model have been proposed
by adding a Normalizing Flow to the posterior network of the Probabilistic U-Net.
This allows the model to move away from modeling the ambiguity as strictly
axis-aligned Gaussian and, instead, allows for a learnt posterior distribution of
varying complexity.

Extending on these advancements, the extension to 3D provides the following
contributions. First, in Section 4.4.1 a 3D probabilistic framework which builds
upon the research from Kohl et al. is proposed. The model exploits the full-3D
spatial information to resolve the uncertainty in the original CT volumes (Sec-
tion 4.4.3). Second, in Section 4.4.5 it is shown that similar to the 2D case, more
diverse 3D segmentation maps are obtained when the posterior distribution is
enhanced by a Normalizing Flow. Third, the proposed method’s ability to capture
uncertainty on the LIDC-IDRI lung nodule datatset is tested and the results in the
3D version of the GED metric are presented. It is shown that a high segmentation
accuracy is obtained using a Hungarian-matched 3D IoU. In Section 4.4.6, these
findings are discussed, which suggest that such modeling enables capturing the
uncertainty more accurately.
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4.4.1 3D Model Architecture
This research extends the Probabilistic U-Net to the 3D domain and addresses a
key limitation by augmenting the posterior network with a Normalizing Flow (NF).
The network consists of a 3D U-Net, a 3D Prior network, 3D Posterior network
enhanced with an NF, and a Feature Combination network. All the 2D opera-
tions of the PU-Net are replaced with their 3D equivalents. By combining the 3D
spatial features extracted by the U-Net with samples taken from a latent distribu-
tion encapsulating the solution space, a set of diverse yet plausible segmentation
maps can be generated. The standard deviations across these predictions can
be interpreted as the aleatoric uncertainty. The U-Net [12] and 3D U-Net [154]
have regularly shown their ability to segment structures of interest at state-of-the-
art performance. Although we employ the 3D U-Net to obtain the relevant 3D
spatial information, this approach is generic and allows for any other segmenta-
tion network to be used. A deep 3D CNN conditioned on the input CT scan is
used to model a low-dimensional axis-aligned Gaussian latent space, representing
the segmentation variants (prior distribution). Another CNN-based axis-aligned
Gaussian encoder (posterior network) that is conditioned on both the query CT
scan and a ground-truth segmentation, is utilized during training to model a pos-
terior low-dimensional latent space. Earlier in Section 4.3, we have pointed out
the shortcomings in modeling the posterior distribution to be strictly Gaussian.
As such, the posterior network is augmented with either a two-step planar or
radial flow [88], to potentially increase the complexity of the captured posterior
distribution, thereby providing more meaningful updates to the prior network
during training.

Figure 4.5 portrays a detailed diagram of the proposed network architecture.
During training, the probabilistic 3D U-Net makes use of the posterior network,
prior network, U-Net and the feature combination layers. Samples are taken from
the image-label conditional distribution, captured by the posterior network and
combined with the features extracted from the U-Net through the feature combina-
tion network. The loss is then computed using Equation (4.5). The prior network
follows the posterior network during training, as enforced by the KL-divergence,
and thus learns to capture this image-label conditional distribution from the image
alone. At test time, the posterior network is discarded and instead, samples are
taken from the prior network. It should be noted that there is only one forward
pass through the U-Net (for image feature extraction) and the prior network (to
capture the image-conditional distribution). However, multiple passes through
the feature combination network are made, in order to combine a new sample
from the prior distribution with the image features. The code for the proposed
probabilistic 3D U-Net is publicly available 2.

2Code available at https://github.com/cviviers/prob 3D segmentation
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4.4.2 3D loss function and evaluation criteria
In line with previous work on conditional variational autoencoders, the training
objective consists of minimizing the variational lower bound [47]. This entails
minimizing (1) a cross-entropy difference (in our case) between the ground-truth
segmentation (y) and a prediction (s), (2) the Kullback-Leibler (KL) divergence
between the posterior distribution (pϕ) and the prior distribution (pθ), and finally,
(3) a correction term for the density transformation through the Normalizing
Flow [204]. Given a query image (x) and a posterior sample (z), the feature combi-
nation network combines the sample with the features extracted by the U-Net to
generate a plausible segmentation (s). This loss term can formally be specified by

L(y,x, θ, ϕ, ψ) =− Epϕ(z|y,x)
[
log pψ(y|z,x)

]
+ β ·

(
KL

(
pϕ(z0|y,x) || pθ(z|x)

)
− Epϕ(z0|y,x)

[
K∑
i=1

log

(∣∣∣∣det dfi

dzi−1

∣∣∣∣)
])

.

(4.5)

These loss terms are combined and the second large term is weighted with hyper-
parameter β [207], [208]. A detailed derivation of the ELBO loss [47] is presented
in Section 2.3. Furthermore, how it is used in the context of PU-Net [189] and the
NF-likelihood objective [56], [88], [204] is performed in the same way as in the
2D case and shown in Section 4.3.1. The metric Squared Generalized Energy Dis-
tance (GED) has become the de-facto metric in the context of uncertainty quantifica-
tion and the quantification of the distance between distributions of segmentation
maps. This GED metric is defined as

D2
GED(PGT, POut) = 2E [d(S,Y)]− E [d(S,S′)]− E [d(Y,Y′)] , (4.6)

where d is a distance measure which equals 1−IoU3D(x, y), hence the 3D version of
the IoU in this implementation. The parameters S and S′ are independent samples
from the predicted distribution POut. The parameters Y and Y′ are the 4 samples
from the ground-truth distribution PGT. In addition to the GED, we also report
the Hungarian-matched IoU. This compensates for a shortcoming in the GED that
when the predictions are relatively poor, the metric rewards sample diversity by
definition. We duplicate the ground-truth set (4 annotations) to match the desired
sample number when computing the Hungarian-matched 3D IoU. This measure
calculates the distance between two discrete distributions by determining an
optimal coupling between the ground-truth and prediction set subject to the IoU
metric (involving all sample combinations).

4.4.3 Dataset and 3D data preparation
To evaluate the proposed method’s ability to capture the ambiguity in the data, we
use the popular LIDC-IDRI dataset [196]. This dataset contains the lung CT scans
from 1,010 patients with manual lesion annotations from up to 4 experts. In total,
there are 1,018 CT scans potentially containing multiple lung nodules of different
levels of malignancy. In this work, we have used the annotations from a second
reading, in which the radiologists were presented an anonymized version of the
annotations from other experts and were allowed to make adjustments to their
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own annotations. Contrary to previous work, we use every nodule in the dataset
if it has been annotated by at least one radiologist (potentially missed by three),
regardless of the shape or severity of the nodule. We preprocess the CT scans by
clustering all nodule annotations for a scan through a computation of a distance
measure between the annotations. If an annotation is within one-voxel spacing
of that particular CT scan from another annotation, it is grouped to belong to the
same nodule. The scan is resampled to 0.5 mm along the x, y-dimensions and
1 mm along the z-dimension to obtain uniform voxel spacing between all samples.
This is followed by cropping the CT scan and resulting annotations based on the
center of the first assessor’s mask with a dimension of 96×180×180 voxels in the
z, x, y-dimensions. Finally, if the nodule does not have at least four annotations,
the ground-truth (GT) masks are filled with empty annotations. This addition is
made to be consistent with previous work on this dataset [56], [189] and to capture
the difficulty in detecting a nodule. This results in a total of 2,651 3D patches, each
containing a nodule and four annotations. Visual examples of the nodule in the
CT scan and the four ground-truth annotations are depicted in Figure 4.6.

4.4.4 Experiments
To compare the proposed approach against prior work, we conduct six experi-
ments. We train the (1) original Probabilistic 2D U-Net and the (2) Radial NF-
augmented Probabilistic 2D U-Net on 2D axial slices of the 3D volume. In practice,
we filter the slices based on the presence of at least one positive annotation from
any of the annotating experts and use them for training, to avoid a heavily imbal-
anced training set. Further experiments include (3) the 3D U-Net, (4) Probabilistic
3D U-Net (3D PU-Net) and an (5-6) NF-augmented (Radial and Planar) 3D PU-
Net, which are trained on the 3D patches. In contrast to prior work where the
3D lesion was sliced and split into 2D images, where some 2D slices potentially
land in the training set and some in the validation/test set, we conduct the exper-
iments on a per-lesion basis. This avoids any potential model bias caused by the
splitting and makes the proposed approach more clinically relevant, since we can
present the uncertainty for each lesion.

Figure 4.6 Example nodule in a slice from the CT scan and the four ground-truth annotations.

The nodule data are split in a 70/15/15 training and validation/test split.
During training, a random sample of one of the four annotations is drawn to be
used as ground-truth segmentation and the CT volume and label is cropped to
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64×128×128 voxels. In line with previous work, for the 3D PU-Net, the dimension-
ality of the latent space is set to L=6. The proposed framework is implemented in
PyTorch and extends on the work conducted by Wolny et al. [160]. We have trained
using a batch size of 32 in the 2D case and 4 in the 3D case. An Adam optimizer
with an initial learning rate of 1×10−4 and a weight decay of 1×10−5 is used. The
learning rate is reduced by a factor of 0.2 if the validation loss does not decrease
after 20 epochs. The parameter β is controlled using a cosine cyclical annealing
strategy, as described by Fu et al. [207]. In all the 3D PU-Net experiments, we
use the same hyperparameters and a hardware configuration with an RTX 3090Ti
GPU3. Training to completion takes about 2 days on the average. For performance
evaluations, we report results using the broadly available RTX 2080Ti GPU (at the
time of publication).

4.4.5 Results on 3D experiments
The results of the conducted experiments are shown in Figure 4.7, Figure 4.8,
Figure 4.9 and Table 4.2. In Figure 4.7, example predictions from all the models
used in the experiments are showcased for qualitative evaluation. Here, µ GT
refers to the mean segmentation of the four raters and µ Pred is the mean of the
predictions. This mean prediction is the segmentation recommended by the Prob-
abilistic 3D U-Net. Additionally, the figure depicts the variation in the predictions.
More specifically, the standard deviation of the ground-truth labels (σ GT) and
the logits (after sigmoid activation) resulting from the model predictions (σ Pred)
are depicted. In the figure it can be observed that this deviation across the pre-
dictions can be interpreted as the uncertainty. We scale the uncertainty heat map
visualization to the the maximum standard deviation of the predictions of a par-
ticular model. Additionally, the figure depicts a rather conservative segmentation
of a part of the lesion from the deterministic 3D U-Net segments, while the other
models are capable of producing a more accurate segmentation results. Figure 4.8
depicts the predictions for the 2D and 3D Prob.U-Net for 2 slices from a nodule
in the test set. It can be observed that the 2D model misses the nodule in Slice 34,
while its 3D counterpart correctly detects it. Although the 2D model has some
uncertainty about the presence of the nodule, it is rather low.

In Figure 4.9, multiple consecutive slices are depicted of a CT scan from the
test set and Prob. 3D U-Net predictions for a nodule. Slice 25 displays some
uncertainty from the model about the presence of a lesion, although no rater
indicated its existence yet. In the next slice (26), the lesion is clearly delineated by
the raters and the model captures and displays the uncertainty in a similar fashion
as the disagreement between the raters. Slices 27-31 and 33-35 are not shown,
since the model correctly segments and captures the uncertainty in comparison
to the raters. Slice 38 reveals the large lesion as shown by the annotations from

3available from Nvidia Inc. Santa Clara, CA, USA
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Figure 4.7 Example predictions for the same data slice with a nodule from the 2D Prob.U-Net,
2D Prob.U-Net with Radial flow, deterministic 3D U-Net, 3D Prob.U-Net, 3D Prob.U-Net with
Radial flow and 3D Prob.U-Net with Planar flow in the test set. This same slice is used for fair
model-performance comparison.

the raters, but it rapidly disappears towards Slice 39. However, the model still
segments the lesion in Slice 39 and expresses high uncertainty.

Table 4.2 presents a quantitative comparison of the proposed approach with
the 2D counterparts, aiming to resolve the ambiguity in the LIDC-IDRI dataset.
We compute the 2D GED and 2D Hungarian IoU on a per-slice basis and take the
average across all the slices of the lesion, ignoring slices with empty ground-truths
and predictions. The 3D GED and 3D Hungarian IoU are immediately computed
at a per-case level and then averaged across the test set. In the case of the 2D
models, during the forward pass of a single 2D slice, an image-based 2D prior
distribution is computed (see the green block at the top left in Figure 4.5). We then
randomly draw 16 samples from this distribution. For the next slice in the series of
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Figure 4.8 Zoomed example predictions from the 2D & 3D Prob.U-Net for 2 subsequent slices
from a nodule in the test set. Slice 34 forms a more difficult case for segmentation and uncertainty
quantification.

the lesion, a completely new 2D prior distribution is presented at inference time.
As such, the uncertainty captured by this prior distribution is inconsistent over
the individual slices of the lesion and it is not possible to reconstruct a consistent
and true 3D segmentation using this approach (certainly not with 3D metrics such
as 3D GED and 3D IoU calculation). For the 3D Probabilistic U-Net, we report the
2D Hungarian-matched IoU and 2D GED (2D IoU distance averaged along the
z-axis) and the 3D Hungarian-matched IoU and GED.

Model 2D↓ GED 2D↑ IoU 3D↓ GED 3D↑ IoU

Kohl et al. 0.445 0.473 N/A N/A
Valiuddin et al. 0.441 0.481 N/A N/A
3D U-Net 1.283 0.332 1.263 0.383

3D Prob.U-Net 0.427 0.510 0.422 0.457
+ Planar Flow 0.417 0.511 0.393 0.465
+ Radial Flow 0.429 0.520 0.401 0.468

Table 4.2 Evaluations of the baseline, 3D U-Net and Prob. 3D U-Net models on the LIDC-IDRI
test set (15%) using the GED and Hungarian IoU metric based on 16 samples.

For the complexity analysis, we compare the inference time of the 3D U-Net
and the Prob. 2D and 3D U-Net per nodule volume (64×128×128 voxels). We

98



C
ha

pt
er

4

4.4. Probabilistic 3D segmentation for aleatoric uncertainty quantification

Figure 4.9 Example 3D Prob.U-Net predictions for multiple slices from a nodule in the test set.
For Slice 39 a postprocessed and enlarged view of the nodule is depicted at the adjacent right for
improved visibility to show that the lesion is still present.

do not include additional results on the models with NF-augmented posteriors
networks, since the two-step low-dimensional bijective transformation has a neg-
ligible computational time in comparison to the rest of the network. Table 4.3
showcases the computation time per operation for the different models and with
different batch sizes (BS). It can be noted that the Prob. 3D U-Net has a shorter
inference time for the above-given volume, compared to its 2D counterpart.

Operation Deterministic Probabilistic

Model 3D U-Net 2D PU-Net 2D PU-Net 3D PU-Net
BS=1 BS=1 BS=64 BS=1

Forward pass 2.34 ms 5.75 ms×64 397.27 ms 124.31 ms
Sample + F-comb N/A 0.51 ms×64×16 157.09 ms×16 8.44 ms×16

Total 2.34 ms 892.29 ms 2910.51 ms 259.35 ms

Table 4.3 Inference time (per operation) of the utilized models, 16 samples from the Probabilistic
2D and 3D U-Net per nodule (64×128×128 voxels). BS is the Batch Size. One CPU core and the
GPU was available during execution time computation.
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4.4.6 Discussion
This research extends the Probabilistic U-Net to the 3D domain to utilize the
rich 3D spatial information when resolving the uncertainty. We have introduced
the Probabilistic 3D U-Net and have employed recent improvements in the 2D
Probabilistic U-Net, by adding either a Planar or Radial flow to the posterior net-
work. This augmentation with NFs enables capturing distributions of various
complexity, thereby relaxing the strictly axis-aligned Gaussian constraint previ-
ously employed. To test the model’s ability to capture the aleatoric uncertainty,
we have used the LIDC-IDRI dataset for benchmark tests.

General segmentation performance: Section 4.4.5 displays the results of the con-
ducted experiments. For qualitative evaluations, Figure 4.7 showcases example
predictions from all the applied models. It can be noted that all models perform
well on this clearly defined lesion, except for the 3D U-Net. The 3D U-Net de-
lineates the lesion in a conservative manner, possibly due to being exposed to
many empty ground-truth labels during training and not being able to capture
this ambiguity in a meaningful way. The 3D PU-Net with Planar flow expresses
more uncertainty about various parts of the lesion.

2D vs. 3D segmentation performance: Figure 4.8 highlights example predictions
of the 3D PU-Net where information from the complete 3D volume is used to
detect, segment and resolve the uncertainty about the lesion in the axial Slice 34
of the CT scan. The same nodule is missed by the 2D PU-Net, due to lack of
information from prior slices. These results are also reflected in the 2D GED and
Hungarian IoU, as shown in Table 4.2, with the 3D models outperforming the 2D
models.

Limitations of 2D annotations: Interestingly, in Figure 4.9, the 3D spatial aware-
ness of the model is showcased through the uncertainty expressed in Slice 25. A
rather large lesion is coming up (iterating through the CT slices in an ascending
order) and the model expresses uncertainty about the exact starting position, since
the raters have not annotated a lesion followed by a large lesion in consecutive
slices. The same phenomenon can be seen moving from Slice 38 to 39, although
here the model incorrectly (according to the raters) presents a lesion segmentation
of the lesion while it is, in fact, still partially visible.

Execution complexity: By the performance evaluations presented in Table 4.3, it
can be observed that it is most efficient to present the uncertainty with a 3D PU-
Net. For a volume of 64×128×128 voxels, the 64 2D slices can be passed through
the 2D PU-Net in a large batch, but it scales poorly in comparison to a single-slice
forward pass. The forward pass of the 2D PU-Net with a batch size of 64 takes
397.27 ms to compute. Drawing 16 samples from the Prior distribution and com-
bining it with the 2D U-Net features through the Feature Combination network
(F-Comb in Figure 4.2) takes 2513.44 ms (157.09 ms×16). In total this approach
will take 2910.51 ms for execution, compared to the approximate 10× speed im-
provement that is required for calculating the uncertainty with the 3D PU-Net
(259.35 ms). It should be noted that significant computational time drawbacks

100



C
ha

pt
er

4

4.5. Overall Conclusion

occur when using the 3D PU-Net in comparison to the the standard 3D U-Net
(2.34 ms for inference), although this is not a realistic alternative because uncer-
tainty cannot be expressed.

4.4.7 Conclusions on probabilistic 3D segmentation
In CAD methods, it is important to provide clinicians with an accurate measure
of uncertainty when they evaluate and plan their procedures. Accurately captur-
ing and presenting segmentation uncertainty will increase clinical confidence in
model predictions and facilitate more informed decision-making. Existing CT-
based segmentation methods aim to realize this by quantifying the uncertainty
from 2D image slices, whereas the true uncertainty resides in the full 3D CT
or MRI volume. A novel 3D probabilistic segmentation model is proposed that
is capable of resolving and presenting the aleatoric uncertainty in 3D volumes
through diverse and plausible nodule segmentation maps. The model consists of a
Deep 3D U-Net and a 3D conditional VAE that is augmented with a Normalizing
Flow (NF) in the posterior network. Since NFs allow for more flexible distribution
modeling, we have alleviate the strictly Gaussian posterior distribution that was
previously enforced. We have tested the approach on the LIDC-IDRI lung nodule
CT dataset.

This is among the first implementations that presents the 3D Squared Gener-
alized Energy Distance (GED) and 3D Hungarian-matched IoU for lung nodule
segmentation and uncertainty prediction. We have quantified the uncertainty
prediction performance and achieved a GED of 0.401 and a Hungarian-matched
3D IoU of 0.468 with the Radial 3D PU-Net. This approach also outperforms the 2D
counterpart on the 2D GED and 2D Hungarian IoU. In addition, since the model
uses the full original 3D volumes, it is a step closer to the practical application
of accurately delineating and presenting uncertainty in 3D CT data. Finally, we
present the aleatoric uncertainty, computed as the standard deviation across the
model predictions, in a visual manner. This enables an interpretable expression of
the uncertainty and is potentially providing clinicians additional insight into data
ambiguity and allowing for more informed decision-making.

4.5 Overall Conclusion
In this chapter, we have explored various methods for uncertainty quantification
in medical image segmentation, a critical aspect for enhancing decision-making
in the medical field. Initially, the types of uncertainty encountered in medical
image segmentation are discussed, specifically epistemic and aleatoric uncertain-
ties. The focus is set on aleatoric uncertainty, which is an inherent ambiguity in
the data. Various approaches for quantifying this type of uncertainty are high-
lighted, amongst which the preferred model is the Probabilistic U-Net (PU-Net).
The PU-Net is examined as a method for handling ambiguities in image segmenta-
tion. Despite its innovative approach, the model limitations have been identified,
paving the way for improvements and further research.
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The presented research is continued by focusing on improving aleatoric uncer-
tainty quantification in multi-annotated medical image segmentation using Nor-
malizing Flows (NFs). By augmenting model posterior distributions with Planar
or Radial NFs, notable improvements in quantifying the uncertainty are achieved.
This is evident from the enhancements in Generalized Energy Distance (GED)
and Hungarian-matched Intersection over Union (IoU) metrics, as well as various
qualitative improvements in nodule segmentation. This method demonstrates the
ability to model more complex segmentation uncertainties and suggests further
exploration of NFs in various medical imaging contexts.

The chapter has introduced a novel approach also for probabilistic three-
dimensional (3D) segmentation to address the inherent limitations of 2D slice-
based methods. By leveraging a Deep 3D U-Net and a 3D conditional VAE aug-
mented with NFs, successful modeling and aleatoric uncertainty in 3D CT volumes
are presented. This approach results in improvements in various metrics, includ-
ing a 3D GED of 0.401 and a Hungarian-matched 3D IoU of 0.468, which proves
the potential for 3D processing and modeling for practical applications in clinical
settings.

In conclusion, the advancements discussed in this chapter, particularly the
use of NFs and the transition to 3D modeling, represent significant steps forward
in the accurate quantification and presentation of uncertainty in medical image
segmentation. These developments not only improve model performance, but
also enhance the interpretability and confidence of clinicians in model predictions,
ultimately contributing to more informed and reliable medical decision-making.

The 3D modeling and discussion on uncertainties is further explored in the
succeeding chapter, yet using different research directions for extensions. The
chapter focuses on prediction of PDAC resectability, where the uncertainty about
the tumor and surrounding vessels are extensively modeled. The variations in the
structures in this pancreatic setting is much more complex than the contour of a
lung nodule. Therefore, the variation and interaction in the structure contours are
utilized to compute a PDAC resection metric. This metric aligns with the clinical
way-of-working in pancreatic cancer treatment.
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from 3D segmentation

5.1 Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malig-
nancies with a dismal prognosis and an overall five-year survival rate of less
than 10% [209]. Despite recent advancements in the field of oncology, pancreatic
cancer often goes undetected until it has progressed into an advanced stage. As a
result, the majority of patients have advanced or metastatic disease, leading to lim-
ited treatment options and poor outcomes [210]. With its high mortality rate and
limited treatment options, identifying the optimal approach for pancreatic cancer
patients remains a crucial area of clinical concern. In recent years, the concept of
resectability [211]–[213] has emerged as a pivotal factor in determining the appro-
priate treatment strategy, emphasizing the importance of accurately assessing the
feasibility of curative surgical resection.

Pancreatoduodenectomy (PD) is the cornerstone for surgical treatment of pan-
creatic cancer. However, this procedure poses significant technical challenges and
is associated with a considerable morbidity rate, ranging from 20% to 30% [214].
However, only 20% of the patients are considered eligible for resection upon initial
diagnosis [125]. Therefore, it is essential to carefully evaluate vascular involve-
ment of the tumor and identify potential arterial anatomical variations during
preoperative assessment. These factors play a critical role in determining the
feasibility of surgical resection [215]. Currently, multi-phase contrast-enhanced

Figure 5.1 Slice from CT scan depicting the involvement between the tumor and vein, a pseudo
overlap label and the computed angle of involvement based on contact pixels (purple). Other labeled
structures are omitted.
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multi-detector computed tomography (MDCT) is the gold standard for evaluating
pancreatic cancer and determining the resectability. Standardized resectability
criteria are used to tailor the need for neoadjuvant therapy and select patients
for (minimally-invasive) surgical resection [211]. Resectability is graded as ei-
ther resectable, borderline resectable, or irresectable, based on the degrees of contact
between the tumor and surrounding vasculature [212], [213], [216]. However, de-
termining surgical resectability based on CT scans only can be difficult, especially
after neoadjuvant treatment. Tumor regression after neoadjuvant treatment is
rarely visible on CT and the amount of vascular involvement tends to be over-
estimated [212], [217]–[219]. Moreover, existing literature demonstrates significant
interobserver variability, even among highly experienced clinicians [220], [221].
This motivates why clinicians have severe difficulties in accurately assessing tu-
mor resectability [222]. Further discussion on methods for resectability assessment
is provided in Appendix B.2.

By leveraging a deep learning-based clinical decision-support system (CDSS),
there is a potential for significant improvement in resectability assessment, assist-
ing clinicians, enhancing the overall accuracy, while incorporating interobserver
variability of the process. This research proposes a workflow to acquire a focused
region of interest containing PDAC and the surrounding anatomical structures.
Three deep learning-based segmentation architectures are implemented to de-
lineate the structures of interest to ultimately present multiple levels of relevant
clinical information. The initial segmentation maps are used to assess tumor size
and its location with respect to the surrounding anatomy. Sufficiently accurate
segmentation of the tumor and surrounding vessels enables the estimation of two
aspects: (1) determining if there is any involvement of the tumor with vessels and
(2) the extent of the involvement. Addressing these points will already provide
information on the resectability of the tumor. Moreover, each of these steps carry
additional clinical value and further insights into patient treatment options. Fi-
nally, we present the ambiguity captured by each of the models and show how
this ambiguity can facilitate in the decision-making process of tumor resectability.

This chapter aims to advance the understanding and application of automated
resectability prediction in PDAC. Building on the groundwork laid in Chapters 3
on various segmentation techniques and the uncertainty quantification methods
discussed in Chapter 4, this chapter develops and evaluate a workflow and deep
learning-based segmentation models to automatically assess tumor-vessel involve-
ment, which is essential for determining tumor resectability. In this context, we
present the following research questions.

• Accurate segmentation of pancreatic ductal adenocarcinoma (PDAC) and the
surrounding vasculature is crucial as it forms the foundation for subsequent
analyses, including the assessment of tumor size, location, and involvement
with nearby blood vessels. The effectiveness of segmentation directly im-
pacts the overall success of the clinical decision support system (CDSS). Can
we accurately segment the PDAC and relevant vasculature?
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• Determining resectability involves analyzing the spatial relationships between
the tumor and the surrounding vasculature to understand the extent of
vessel involvement. This step is critical in clinical practice as it informs
surgical decisions and treatment planning. How do we automatically determine
if the PDAC is resectable?

• Uncertainty in model predictions can arise from various sources, including
data variability, model limitations, and inherent ambiguities in medical im-
ages. By capturing and presenting this uncertainty, the CDSS can provide
more nuanced information to clinicians, helping them make better-informed
decisions. How can we utilize model uncertainty to provide clinically-relevant
resectability predictions?

The proposed workflow in this chapter involves processing CT scans to segment
the tumor and surrounding vascular structures, followed by analyzing the spa-
tial relationships and extent of vascular involvement. This method mirrors the
expert radiologists’ approach to PDAC assessment. Three segmentation archi-
tectures, i.e. nnU-Net [13], 3D U-Net [154], and Probabilistic 3D U-Net [223], are
utilized to achieve high accuracy in the segmentation of veins, arteries, and tu-
mors. The segmentation maps enable automated detection of tumor involvement
with high sensitivity and specificity, as well as the computation of the degree
of tumor-vessel contact. Additionally, we address the significant inter-observer
variability in assessing these structures by presenting the uncertainty captured
by each model, thereby providing clinicians with a clearer indication of tumor-
vessel involvement. This approach facilitates more informed decision-making for
surgical interventions, offering a valuable tool for improving patient outcomes,
personalized treatment strategies, and survival rates in pancreatic cancer.

The chapter is divided into the following sections. Section 5.2 provides an
overview of related work on PDAC detection, segmentation, and resectability
prediction, contextualizing the proposed approach within the existing research
landscape. Section 5.3 details the methods, including data collection, model ar-
chitectures and training of the segmentation models. It further discusses the com-
putation of vessel involvement, distinguishing between aleatoric and epistemic
uncertainty, and examine the effect of ambiguity on tumor-vessel involvement.
Section 5.4 presents the results of the experiments, showcasing the performance
of the utilized models in predicting resectability and their implications for clini-
cal decision-making. Finally, Section 5.5 concludes the chapter, summarizing the
findings and their significance.

5.2 Related work on PDAC detection, segmentation and re-
sectability prediction

Segmentation and detection. Deep learning-based methods have demonstrated sig-
nificant potential in the detection of pancreatic cancer on CT scans. Several studies
have employed classification networks and achieved high accuracy in detect-
ing PDAC and other types of pancreatic cancer [224]–[232]. Recently, segmenta-
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tion for the classification of pancreatic cancer has garnered significant attention,
since it both detects and localizes cancer [233]–[237]. Notably, Alves et al. [236]
and Viviers et al. [53] have proposed a similar segmentation-for-classification
framework, leveraging the surrounding anatomy and secondary tumor-indicative
features, such as the common bile duct and pancreatic duct, to enhance tumor
segmentation and improve detection accuracy.

Resectability. Obtaining an automated detailed segmentation map of the tumor
provides high clinical value. As such, Mahmoudi et al. [238] have proposed a hy-
brid 2D-3D segmentation-based approach for detailed segmentation of the tumor
mass and surrounding vessels in tumor-only cases. While they showcase good
segmentation accuracy (DSC: 0.61 PDAC, 0.81 Artery and 0.73 Vein), they note that
a full 3D method will further improve results and will be essential for determining
tumor-vessel involvement. Recently, Yao et al. [239] presented a multicenter, retro-
spective study in which they construct an imaging-derived prognostic biomarker,
called DeepCT-PDAC, for overall survival (OS) rate prediction. They train seg-
mentation (nnU-Net) and prognostic models (CE-ConvLSTM and Tumor-vascular
Involvement 3D CNN) to model the spatial relations between the tumor and
anatomy. The 3D predictions of PDAC, the portal vein and splenic vein (PVSV),
superior mesenteric vein (SMV), superior mesenteric artery (SMA) and truncus
coeliacus (TC) are used in a CNN branch modeling the tumor-vascular involve-
ment in 3D. Contact area features are predicted to be used in a final risk score or OS
prediction. While the research presents impressive results for the accuracy of OS
predictions, intermediate steps leading to the final prediction remain unclear at a
clinical level. This lack of information could inhibit the adoption of this technique
as a co-pilot or assistive tool to oncologists. Instead, CAD models should present
clinically-relevant information based on the current way of working and allow
the oncologist to assess each point and then finally decide on patient treatment
options. Despite the remarkable progress in utilizing deep learning models for
PDAC segmentation, the achieved accuracy is still relatively low and may not be
sufficient for determining PDAC resectability.

5.3 Methods
This section details the data collection (Section 5.3.1), the segmentation model
architectures (Section 5.3.2), and the procedures for data preparation and training
details (Section 5.3.3). We further discuss how we compute and assess vessel in-
volvement (Section 5.3.4), distinguish between aleatoric and epistemic uncertainty
(Section 5.3.5), and examine the effect of ambiguity on tumor-vessel involvement
(Section 5.3.6).

5.3.1 Data collection
This retrospective single-center research study investigates PDAC resectability in
99 patients specifically located in the pancreatic head. Determined by radiological
assessment, a group of 50 patients have PDAC without vascular involvement,
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while 49 patients have PDAC with potential involvement of critical adjacent vas-
culature. We employ contrast-enhanced CT images obtained from the Catharina
hospital Eindhoven, The Netherlands. Each patient underwent a multi-phase pan-
creatic protocol CT scan, including (at least) the portal-venous phase, parenchymal
phase, arterial phase, or late liver phase. Consequently, a total of 195 CT scans
are included in the analysis. Prior to conducting the research, all CT scans were
meticulously annotated. Under supervision of an expert abdominal radiologist,
a surgical resident manually annotated all the relevant anatomical structures at
voxel-level, including the tumor, pancreas, pancreatic duct (PD), common bile
duct (CBD), aorta, superior mesenteric artery (SMA), celiac trunk, hepatic artery,
splenic artery, splenic vein, superior mesenteric vein (SMV), portal vein, gastro-
duodenal artery (GA) and inferior vena cava. For model training purposes, we
aggregated the different arteries into a single arterial structure and, similarly, all
the veins into one venous structure.

The determination of tumor resectability requires careful consideration of tu-
mor presence, size and its relationship with surrounding anatomical structures.
Particularly, the extent of contact between the tumor and neighboring veins and
arteries plays a crucial role. This degree of contact is typically computed after
the clinican made the segmentation delineations where each of the structures are
(or could be based on their best knowledge). Consequently, CT voxels have the
potential to belong to multiple structures simultaneously. Figure 5.1 illustrates
an example along with corresponding ground-truth annotations of the involve-
ment. Due to the inherent ambiguity in the data and low contrast in some phases,
segmentation maps and the derived tumor-vessel involvement varies between
subsequent scans of the same patient. The reported results are on a per-scan basis.

5.3.2 Segmentation models
This research employs three segmentation models to delineate the tumor and
surrounding anatomy. (1) We train the 3D nnU-Net to automatically create the
segmentation maps of the structures of interest in 3D. The six different structures
are layered from the least to the most important: pancreas, common bile duct,
pancreatic duct, arteries, veins, tumor. To determine overlap, a 7th and 8th pseudo-
structure is created for the tumor-artery and tumor-vein overlap. (2) A custom
3D U-Net is developed to segment the structures in multi-channel 3D, alleviating
the need for pre-computed pseudo-labels and enabling direct overlap prediction.
The model is set up to be identical to that of the default nnU-Net, except for a
final sigmoid activation, instead of softmax probabilities in the nnU-Net, that
enable mutually independent class predictions. This approach was also chosen
to have a fair indication of the effect of the proposed novel overlap loss (5.2).
(3) The third approach, the Probabilistic 3D U-Net follows the same segmentation
scheme as the 3D U-Net and is utilized to express the aleatoric uncertainty in the
structures of interest by presenting multiple plausible segmentation hypotheses.
In Figure 5.2, these three approaches are visualized along with the initial tumor
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Figure 5.2 Workflow illustration for tumor segmentation from a CT scan. Using the CT scan, the
pancreas segmentation maps is created and cropped for automated tumor segmentation [53], [236].
Having the tumor detection and segmentation, another crop is taken around the tumor and provided
to the proposed three models (Block B) to determine tumor-vessel involvement.

detection processing chain.

5.3.3 Data preparation and training details
The data for resectability prediction are prepared according to the workflow de-
picted in Figure 5.1. In Section 5.2, various methods are presented that achieve
high PDAC detection accuracy with reasonable segmentation accuracy. As such,
we continue by cropping the CT around the tumor center. This is implemented
based on the ground-truth tumor labels. However, in practice, this is performed
by a prior segmentation model (as depicted in Block A in Figure 5.2). We crop
the CT scan and corresponding labels of the tumor, pancreas, pancreatic duct,
common bile duct and an aggregate of all the arteries and veins (as mentioned
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in Section 5.3.1). For the nnU-Net implementation, two additional overlapping
pseudo-labels are created. The dataset is resampled to the mean dataset size
( [1 mm, 0.67 mm, 0.67 mm] in the z, y, x-axes) and cropped to [64, 128, 128]-voxels
in the z, y, x-axes, respectively.

The patient dataset is split into a 70%/15%/15% for train/validation/test-
ing. The test split is chosen by a surgical resident to be representative of the
distribution of the tumor size, location and involvement present in the dataset.
From the 85% train/validation data we perform threefold bootstrapping using
random patient splits and report results on the validation and test splits. The
full-resolution 3D nnU-Net is employed as reported publicly 1 without any mod-
ifications. The custom 3D U-Net is implemented in PyTorch and extends on the
work by Wolny et al. [160] 2. The Probabilistic 3D U-Net is adapted from the im-
plementation by Viviers et al. [223] and available online 3. During training, the
loss function as introduced in Eq. (5.3) is employed and all other U-Net model
parameters are chosen to be consistent with that of the nnU-Net where possible.
The U-Nets are 5 layers deep with 32, 64, 128, 256, and 320 filters at each layer,
respectively. A cosine annealing strategy is employed to modulate the Probabilis-
tic 3D U-Net ELBO parameter β between 1 and 10. All the models are trained for
1000 epochs with the Adam optimizer and a linearly decaying learning rate sched-
uler. During training, the model weights with the best validation performance are
chosen.

Recent advancements in semantic segmentation for medical applications have
demonstrated the effectiveness of combining binary cross-entropy (BCE) and DSC
loss functions to enhance performance [13]. The cross-entropy loss is proficient
in capturing global context and penalizing misclassifications, while the DSC loss
emphasizes spatial overlap and similarity. Although optimizing these objectives
contributes to determining the overlap between tumors and vessels, we propose
a specific loss function, called the Overlap Loss (OLL).

More formally, assume x ∈ X and y ∈ Y as random variables taking values
in RZ×H×W and RC×Z×H×W , representing the input images (Z image depth,
H-height and W -width) and ground-truth masks, respectively. Accordingly, We
define random variables T ∈ T , A ∈ A and V ∈ V , representing tumor, artery
and vein segmentation masks, respectively, which are elements in subsets of Y .
We denote the pseudo-overlap labels α and ν for the tumor-artery and tumor-vein
pairs, which are defined as

α = T⊙A, ν = T⊙V, (5.1)

where ⊙ implies the element-wise product of the tensors. Then, the overlap loss

1https://github.com/MIC-DKFZ/nnUNet
2https://github.com/wolny/pytorch-3dunet
3https://github.com/cviviers/prob 3D segmentation
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term OLL is specified by

Ho = H(α̂, α) +H(ν̂, ν), (5.2)

where H is the element-wise BCE and Ho the summation of the two BCE loss
terms. The hat notation (α̂) is utilized to differentiate sigmoid-activated logit pre-
dictions from ground-truth (non-hat) masks. It is important to note that sigmoid
activation precedes the creation of the pseudo labels.

The OLL directly aims to optimize the predictions of the overlapping struc-
tures. Although the objective to accurately predict the degrees of involvement is
computed based on contact/adjacent pixels (see Section 5.3.4), we conjecture that
accurate overlap prediction will result in precise delineation of the contact area.
By introducing this direct objective, we anticipate further improvements in the
accuracy of segmentation results in the areas of interest and related analysis. The
complete training objective (CLL) for the 3D U-Net and the reconstruction loss for
the Probabilistic 3D U-Net can then be formulated as

CLL =α ·
[
β ·H(p, q) + (1− β) · DSC(p, q)

]
+ (1− α) ·Ho(p, q),

(5.3)

where α and β are weighting factors between the different loss components. The
addition of the OLL loss components further emphasizes the importance of ac-
curate segmentation of the overlapping and contact areas of the tumor and vein-
s/arteries. In the conducted experiments, we have empirically found that β = 0.5
and α = 0.8 work well.

5.3.4 Computing and assessing vessel involvement
The degree of tumor-vessel involvement is computed on a per (2D) axial-slice
basis. The contact area between the tumor and the vessel is calculated based
on adjacent pixels, which is followed by computing the vessel centroid and the
distance of each of the contact pixels to the vessel center. The angle between each
pixel and the center is calculated using the 4-quadrant arctangent function. The
difference between the maximum and minimum angle is then used to determine
the degree of involvement. An example result can be observed in Figure 5.1, where
vertical upside of the image is the reference and the axis origin at the vessel center.
It is important to note that while clinicians do not have automated tools to perform
this, the degree of involvement is clinically assessed and measured in a similar
way.

We introduce a classification metric of predicting involvement with the arter-
ies and veins: if the resulting tumor and artery/vein segmentation predictions
have involvement (degree > 0), even at the wrong location compared to the GT,
while the GT also has involvement somewhere, we consider it a true positive (TP)
prediction. If there is involvement prediction and the GT has no involvement, it is
a false positive (FP). In the case of no predicted involvement whatsoever and the
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GT also has no involvement, we consider it a true negative (TN) and vice-versa for
false negatives (FN). For the scan-level sensitivity and specificity, we follow the
same procedure (if either the artery or vein involvement is a TP, then at scan-level
it is a TP and so forth). Additionally, the sensitivity and specificity results are mea-
sured for the clinically relevant superior mesenteric vein (SMV), portal vein (PV),
superior mesenteric artery (SMA) and Truncus. In our evaluation, we remove
the arterial and venous segmentation predictions that have an overlap with the
pancreas (simply remove overlapping voxels) to strictly separate vessels/arteries
from the pancreas. The remaining segmentation predictions are then compared to
the GT aggregate of the SMV and PV (venous) or SMA and Truncus (arterial). The
Dutch Pancreatic Cancer Group (DPCG) [213] classifies tumor resectablity based
on the degrees of tumor-vessel contact. The tumor is considered resectable if SMV
and PV have ≤ 90◦ contact, borderline resectable if the contact is between 90◦

and 270◦ and irresectable if the contact is > 270◦. For the arterial vasculature, the
DPCG considers tumor as borderline resectable for ≤ 90◦ contact and any amount
of involvement more than 90◦ deems the tumor irresectable.

5.3.5 Distinguishing between aleatoric and epistemic uncertainty
Distinguishing between aleatoric and epistemic uncertainty is valuable for de-
signing effective segmentation models. By quantifying and analyzing these uncer-
tainties individually, researchers can identify whether the model limitations stem
from data noise or model deficiencies.

While the theoretical distinction between aleatoric and epistemic uncertainty
is crucial for model development and research, its practical value in clinical ap-
plications of medical image segmentation models remains a topic of debate. In
real-world clinical settings, the primary concern is often the total uncertainty as-
sociated with model predictions rather than its decomposition into aleatoric and
epistemic components. As long as the total uncertainty is accurately quantified
and effectively communicated to clinicians, this provides sufficient information for
informed decision-making. There is currently limited empirical evidence demon-
strating that distinguishing between these types of uncertainties yields significant
clinical benefits. Instead, focusing on the overall uncertainty can streamline the
implementation of segmentation models in clinical workflows, thereby ensur-
ing that the confidence levels of model predictions are clearly understood and
appropriately acted upon by healthcare professionals [92].

Given the above context and the proven ability to capture different types of
uncertainty, we do not differentiate between aleatoric and epistemic uncertainty
when evaluating their impact on tumor-vessel involvement. The primary goal is
to provide an accurate resectability assessment with well-defined deviation mar-
gins, regardless of the source of uncertainty. By focusing on the total uncertainty,
we ensure that the system delivers comprehensive and actionable information
to clinicians, thereby facilitating informed decision-making and enhancing the
reliability of the resectability predictions.
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5.3.6 The effect of ambiguity on tumor-vessel involvement
Accurate estimation of uncertainty is vital in image segmentation tasks to assess
the reliability of the predicted segmentation maps. In this study, we compute the
tumor-vessel involvement directly from the segmentation results and, as such, any
variation in the resulting segmentation can have a large impact on the involvement
prediction and the extent (degree) thereof. We propose a comprehensive approach
that (a) ensembles different model folds providing the epistemic uncertainly and
(b) a probabilistic modeling approach to capture both epistemic and aleatoric
uncertainty in the resulting segmentation maps.

To capture epistemic uncertainty, we construct an ensemble of the segmenta-
tion models. Each model in the ensemble is trained with different weight initial-
ization procedures and training dataset folds. By considering the disagreement
among the ensemble members as samples from the model weight distribution,
we can effectively capture the model’s epistemic uncertainty regarding the seg-
mentation [240], [241]. This is further detailed in the paragraph below. If so, the
ensemble for 3D nnU-Nets and 3D U-Nets are thus capable of expressing the
epistemic uncertainty. To address aleatoric uncertainty associated with ambiguity
in the image data, we employ a probabilistic U-Net [56], [189]. The probabilistic U-
Net explicitly models the uncertainty within data by learning a lower-dimensional
latent distribution of plausible variations in the output. This enables to capture the
inherent variability and ambiguity in voxel-level predictions [56]. By integrating
the ensemble of probabilistic U-Nets, we obtain a holistic uncertainty estimation
framework that captures both epistemic and aleatoric uncertainty. This combined
uncertainty estimation approach enhances the interpretability and reliability of
the segmentation results.

To address the practical implementation aspect of expressing the disagreement
between model ensemble members for epistemic uncertainty for the nnU-Net
and 3D U-Net, we exploit the mean and standard deviation of the predicted seg-
mentation probabilities across the three folds as the mean prediction and the
epistemic uncertainty. The predicted probabilistic U-Net sigmoid probabilities
can be written as Y ∈ RS×C×Z×H×W , where S denote the samples. Computing
σ(Y ) represents the aleatoric uncertainty and µ(σ(Y0), σ(Y1), σ(Y2)) specifies the
mean aleatoric uncertainty across the three model folds. The epistemic uncer-
tainty can be computed as the variance of the individual mean predictions, hence
σ(µ(Y0), µ(Y1), µ(Y2)). Figure 5.4 depicts the sum of the aleatoric and epistemic
uncertainty for the probabilistic U-Net.

5.4 Results and discussion
The experimental results are listed in Table 5.1, Table 5.2 and Figure 5.4. The mean
and standard deviations are reported of the sensitivity, specificity and DSC (across
all cases) on the validation sets, the three different models (from the folds) on the
test set and an ensemble of the models’ folds predictions on the test set. We do
not include any results on segmentation performance of the pancreas, pancreatic
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duct or common bile duct, since it does not directly contribute to the tumor-vessel
involvement focus of this study. As presented in Table 5.2 and Figure 5.3, an R2

score is provided on how well the predicted maximum involvement correlates to
the GT maximum involvement.

We have produced this plot by taking the maximum involvement angle at
any slice (computed using the GT) and compare it with the maximum predicted
angle of involvement. The maximum angle of involvement is one of the most
important criteria used by clinicians in determining the treatment plan. Figure 5.4
showcases the performance of the three segmentation models (in the three dual
bottom rows) on a scan from the test set (top row). The particular model ensemble
prediction (second vertical column), the overlapping structure, either predicted
or derived (third vertical column), and computed degrees of involvement are
presented (fourth vertical column). In the uncertainty (second) row for each model,
the associated uncertainty is showcased (computed as described in Section 5.3.6).
The uncertainty heat map is on a standard 0-0.5 scale and clipped below 0.01
to enable visualization of the background. The segmentation maps derived by
subtracting 1, adding 1 and adding 2 voxel-level standard deviations are presented
in the next columns to illustrate the effect that the uncertainty can have on the
final tumor-vessel involvement prediction.

Validation results: In terms of segmentation accuracy (Table 5.1, the nnU-Net
outperforms the other models and achieves tumor, artery and vein DSC scores of
0.67±0.03, 0.88±0.02 and 0.87±0.02. However, the overlap DSC scores for artery
and vein are low, indicating difficulty in delineating these pseudo-structures. The
OLL used in the 3D U-Net hardly affected the DSC scores of the overlapping
structures compared to the nnU-Net. The sensitivity and specificity values for
artery and vein segmentation vary, with the vein sensitivity showing higher per-
formance compared to artery sensitivity. However, the OLL significantly enhances
both artery (0.48±0.17) and vein (0.86±0.07) sensitivity of the 3D U-Net at the cost
of a few FP predictions.

Test results: The obtained segmentation accuracies (Table 5.1 align closely with
the validation results. Specifically, the proposed OLL approach exhibits enhanced
generalization ability, with the 3D U-Net model showing slight improvements in
the DSC scores for overlapping structures (due to the few pixels belonging to this
overlapping structure). The artery overlap segmentation achieves a DSC score
of 0.02±0.01 compared to the baseline score of 0, while the vein segmentation
yields a DSC score of 0.14±0.03, surpassing the baseline score of 0.08±0.01. These
low scores can be attributed to very small structures, large GT variability and
general difficulty in accurate delineation due to a lack of contrast. The sensitivity
and specificity values for artery and vein segmentation on the test set are generally
consistent with the validation results. However, it is worth noting that the 3D U-
Net model displays larger standard deviations, indicating that some model folds
correspond well with the test set, while others demonstrate certain discrepancies.
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Metric 3D nnU-Net 3D U-Net OLL Prob. 3D U-Net OLL

Validation

Tumor DSC 0.67± 0.03 0.65± 0.02 0.50± 0.03
Artery DSC 0.88± 0.02 0.83± 0.03 0.84± 0.03
Vein DSC 0.87± 0.02 0.85± 0.03 0.86± 0.02
Artery Overlap DSC 0.05± 0.04 0.04± 0.03 0.05± 0.03
Vein Overlap DSC 0.16± 0.08 0.17± 0.05 0.14± 0.04
Artery Sensitivity 0.35± 0.18 0.48± 0.17 0.49± 0.12
Artery Specificity 1.00± 0.00 0.90± 0.08 0.85± 0.05
Vein Sensitivity 0.79± 0.15 0.86± 0.13 0.85± 0.05
Vein Specificity 0.87± 0.11 0.87± 0.07 0.73± 0.25
Scan Sensitivity 0.81± 0.14 0.87± 0.11 0.87± 0.03
Scan Specificity 0.92± 0.11 0.85± 0.03 0.74± 0.20

Test

Tumor DSC 0.65± 0.01 0.63± 0.01 0.49± 0.08
Artery DSC 0.86± 0.00 0.86± 0.01 0.86± 0.01
Vein DSC 0.90± 0.00 0.87± 0.00 0.88± 0.01
Artery Overlap DSC 0.00± 0.00 0.02± 0.01 0.01± 0.00
Vein Overlap DSC 0.08± 0.01 0.14± 0.03 0.12± 0.02
Artery Sensitivity 0.23± 0.05 0.53± 0.17 0.05± 0.08
Artery Specificity 0.94± 0.02 0.91± 0.04 0.83± 0.08
Vein Sensitivity 0.85± 0.06 0.81± 0.09 0.73± 0.08
Vein Specificity 0.77± 0.06 0.75± 0.18 0.60± 0.11
Scan Sensitivity 0.81± 0.00 0.83± 0.08 0.77± 0.07
Scan Specificity 0.74± 0.07 0.74± 0.13 0.67± 0.09

Test Ensemble

Tumor DSC 0.66 0.66 0.56
Artery DSC 0.86 0.86 0.87
Vein DSC 0.91 0.88 0.89
Artery Overlap DSC 0.00 0.01 0.01
Vein Overlap DSC 0.07 0.15 0.13
Artery Sensitivity 0.20 0.30 0.40
Artery Specificity 0.91 1.00 0.95
Vein Sensitivity 0.81 0.88 0.75
Vein Specificity 0.81 0.81 0.62
Scan Sensitivity 0.81 0.88 0.79
Scan Specificity 0.79 0.86 0.72

Test Ensemble Predictions with only the SMV, PV, SMA, Truncus involvement

SMA or Truncus Sensitivity 0.50 0.50 0.50
SMA or Truncus Specificity 0.90 0.93 0.90
SMV or PV Specificity 0.92 0.92 0.77
SMV or PV Specificity 0.79 0.89 0.68
Scan Sensitivity. 0.92 0.92 0.79
Scan Specificity 0.79 0.89 0.68

Table 5.1 Segmentation and overlapping scores obtained with the 3D nnU-Net, 3D U-Net with
OLL and Prob. 3D U-Net with OLL across 3 validation folds. These three models and an ensemble
of these models are applied to the test set.
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Metric 3D nnU-Net 3D U-Net Prob. 3D U-Net

Validation

Artery R2 −0.07± 0.26 −0.17± 0.09 −0.55± 0.56
Vein R2 0.34± 0.39 0.16± 0.40 −1.95± 2.76

Test

Artery R2 −0.24± 0.01 0.12± 0.22 −0.24± 0.17
Vein R2 0.37± 0.21 0.42± 0.13 −0.04± 0.44

Test Ensemble

Artery R2 −0.27 −0.24 -0.06
Vein R2 0.52 0.42 0.31

Test Ensemble with only the SMV, PV, SMA, Truncus involvement

Artery R2 −0.14 −0.01 -7.53
Vein R2 0.54 0.44 0.60

Test Ensemble vascular criteria SMV, PV, SMA, Truncus involvement

0◦ = Involvement (19/19), (27/30) (19/19), (28/30) (19/19), (27/30)
0◦ < Involvement ≤ 90◦ (5/5), (1/1) (5/5), (1/1) (5/5), (1/1)
90◦ < Involvement ≤ 270◦ (0/7), (0/1) (2/7), (0/1) (4/7), (0/1)
270◦ < Involvement (1/1), (0/0) (0/1), (0/0) (1/1), (0/0)
Accuracy Vein, Acc. Artery 0.781, 0.875 0.813, 0.906 0.906, 0.875
Overall Accuracy 0.828 0.860 0.891

Table 5.2 Correlation between ground-truth and predicted involvement. Attending to the bottom
rows of the table and following the DPCG criteria [213], the tumor-vein (first set of brackets) and
tumor-artery (second set of brackets) involvement is categorized and assessed. The first number in
the bracket indicates the model prediction and the second number indicates the GT number of in the
corresponding involvement condition. In the last two rows on vascular criteria, the table depicts the
accuracy obtained for each topic of interest (vein, artery) and the overall accuracy with each model.
The listed numbers are computed from the involvement conditions indicated directly above them.

Test ensemble: Predictions from the three folds are combined, resulting in a
minor segmentation performance increase across all the models (Table 5.1). The
overlap DSC scores for artery and vein remain low, however, the 3D U-Net shows
segmentation improvements over the nnU-Net that result in larger detection per-
formance improvements for both involvement with the artery and vein.

Degree of involvement: Table 5.2 and Figure 5.3 show that there is moderate
agreement between the predicted angle of involvement and the ground-truth an-
gle for the venous structures specifically in the validation, test and test ensemble
for the critical structures. The final test ensemble showcases slightly better align-
ment for the Prob. U-Net (R2 0.60) for angles in the superior mesenteric vein (SMV)
or portal vein (PV). Very low agreement for the degree of involvement with the
arteries is shown. The test set only contains one case with involvement with the
superior mesenteric artery (SMA) and one with the Truncus. The remaining cases

115



C
hapter5

5 . T U M O R R E S E C TA B I L I T Y P R E D I C T I O N

Figure 5.3 Maximum SMV or PV degrees of involvement.

either have no involvement or involvement with the gastroduodenal artery (see
Figure 5.4), which can easily be ignored by removing arterial predictions within
the pancreas. Table 5.2 depicts the degree of involvement according to the DPCG
criteria. Despite not achieving perfect accuracy in predicting the exact angles (a
challenging task to begin with), the models provide clinically-relevant evaluations
that are sufficiently accurate for practical use as per the four involvement classes.
All three models capture the extent of involvement almost perfectly for smaller
degrees of involvement and the Prob. 3D U-Net performs slightly better than the
other models at larger degrees of involvement. It is worth mentioning that the
models tend to underestimate the involvement for larger degrees of involvement,
indicating a potential limitation in capturing extensive involvements accurately.
This can be attributed to the absence of cases with extensive involvement in the
dataset. The Prob. 3D U-Net (third column in Table 5.2) consistently outperforms
the other models, particularly at larger degrees of involvement, as evidenced by
its superior overall accuracy (0.891) and balanced performance across venous and
arterial structures, thereby making it the most reliable model for clinically-relevant
resectability evaluations.

Test ensemble uncertainty: The models’ uncertainties are presented in Figure 5.4
for a scan from the test set that, in this slice, appears to be borderline resectable
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Figure 5.4 Ground truth (top) and predictions of the three models from a test set case. The meaning
of the various sub-pictures is explained in the text.
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(90◦<Involvement≤ 270◦), due to the involvement with the SMV. Incorporating
the uncertainty in the segmentation predictions allows for a likelihood-based eval-
uation of the tumor-vessel degree of involvement. In the example, the nnU-Net
underestimates the tumor size and involvement and predicts a resectable tumor.
With very defined uncertainty regions and taking uncertainty steps (-1 σ, +1 σ

and +2 σ) does not change the degree of involvement prediction by much and
therefore, the treatment strategy will not be affected. The 3D U-Net initially under-
estimates the involvement, but with +2 σ steps, the borderline-resectable margin
is crossed, indicating a potentially larger tumor with more involvement and the
correct treatment approach. The Probabilistic 3D U-Net already predicts the cor-
rect response (borderline resectable) with a larger degree of involvement (107.67◦).
While the model is capable of expressing all the uncertainty, in this case it does
not affect the predicted resectability.

All segmentation models obtain good segmentation accuracies for the desired
structures of veins, arteries and the pancreatic tumor. Although the deep learn-
ing models demonstrate promising segmentation results, there is still room for
improvement, particularly in the tumor segmentation and capturing the area of
overlap between the tumor and vessels, which, we conjecture correlates with the
contact area and ultimately the degrees of involvement. The lower tumor DSC can
be connected to the lack of visual information, both in texture and contrast, in CT
volumes concerning the tumor. This can be readily understood, since this overlap
measurement is a secondary step after the primary step of obtaining sufficient
segmentation accuracy of the individual components. Presenting the R2 metric,
the effect of OLL and valuable uncertainty estimates is a first attempt at accurately
quantifying the amount of overlap and extent of tumor-vessel involvement. Ob-
taining a more accurate measurement and a metric that incorporates uncertainty
in the involvement assessment is future work. As for the primary objective, we ob-
tain high resectability classification accuracy from the segmentation maps, clearly
predicting tumor-vessel (sensitivity 88% and specificity 86%) and tumor-critical
vessel (sensitivity 92% and specificity 89%) involvement. These results are of high
clinical value and very encouraging because it is achieved by following the clini-
cal way of working from deriving tumor-vessel contact based on the previously
mentioned segmentation results.

Limitations: The above-mentioned findings are based on a small dataset, partic-
ularly concerning tumor-artery involvement. Accurate assessment of tumor-vessel
involvement heavily relies on precise segmentation, which needs to exactly match
the annotations provided by experts. However, achieving such accuracy is chal-
lenging, considering the inherent ambiguity associated with tumor visibility on
CT, which is openly discussed among experienced clinicians. This work is one of
the first to facilitate and contribute to this challenge that clinicians have to face on
a daily basis with potentially severe patient consequences in decision-making.
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5.5 Conclusion
This chapter has presented a robust workflow for predicting tumor-vessel involve-
ment and tumor resectability in pancreatic ductal adenocarcinoma (PDAC) using
CT scans. Building on the methodologies and findings developed in Chapters 3
and 4, this study has concentrated on the application and evaluation of three state-
of-the-art deep learning-based segmentation architectures: the 3D nnU-Net, a 3D
U-Net with overlap loss (OLL), and the Probabilistic 3D U-Net with OLL. The
overlap loss (OLL) introduced in this chapter, although giving marginal improve-
ments in the DSC score of the overlapping structures, has a large impact on the
obtained sensitivity (the most important metric). These models have been imple-
mented to automate the segmentation of PDAC while involving the surrounding
critical anatomical structures. The extensive validation with the three models has
established solid baselines and makes the obtained results more reliable for further
use and clinical consideration.

The groundwork laid in Chapter 3 on PDAC detection and segmentation pro-
vided the necessary foundation for the accurate identification of tumor and sec-
ondary features, while the exploration of uncertainty quantification in Chapter 4
informed the proposed approach to modeling and interpreting the segmenta-
tion uncertainties. Leveraging these insights, we have successfully delineated
key anatomical structures with three automated segmentation models, achieving
high accuracy for veins (DSC 0.88), arteries (DSC 0.86), and pancreatic tumors
(DSC 0.66) with the 3D U-Net. This enables precise prediction of tumor-vessel
involvement by deriving degrees of involvement from the segmentation maps.
Particularly, the implemented approach to compute the degrees of contact towards
the center points of the segmented vessels enables to derive an angular difference
rather than absolute values, which makes the prediction more robust.

The proposed approach automates the detection and quantification of tumor-
vascular contact from the predicted segmentation maps. Although accurately mea-
suring the degree of involvement remains challenging, the proposed approach
yields compelling results in classifying resectability. The models demonstrate
high accuracy in determining any tumor involvement, with the 3D U-Net achiev-
ing the highest sensitivity (0.88) and specificity (0.86). Although the accuracy in
computing the exact degrees of involvement is low across all the models, it is accu-
rate enough to sufficiently classify the extent of involvement according to DPCG
criteria. For this task, the Prob. 3D U-Net performs best with a high 89.1% accu-
racy, offering clear and reliable indications to clinicians. Additionally, the system
provides clinicians with valuable uncertainty intervals of involvement, thereby
enhancing the reliability of the resectability assessments. This advancement fa-
cilitates more informed decision-making for surgical interventions and supports
the development of personalized treatment strategies, ultimately contributing to
improved patient outcomes in PDAC management.
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6.1 Introduction
Out-of-Distribution (OOD) detection is a pivotal aspect of machine learning that
enables detecting samples that deviate from the normal and In-Distribution (ID)
set. Detecting these anomalous samples can either be the main task or OOD
detection can be employed as a safeguard to a subsequent system to ensure the
reliability and robustness of models when deployed in real-world settings.

The primary challenge addressed by OOD detection is the identification of in-
puts that differ significantly from the data encountered during the training phase.
Failure to accurately identify such inputs can lead to erroneous predictions and
potential system failures, particularly in critical applications such as medical diag-
nosis, autonomous driving, and security systems. To this end, this chapter focuses
on two critical aspects of OOD detection: semantic OOD detection and covariate
shift detection. Semantic OOD detection aims at identifying inputs that differ
from the training data in terms of class or semantics. In contrast, covariate shift
detection identifies shifts in the high-level input distribution while maintaining
consistent semantics. These two experiments explore OOD detection from both
perspectives, ensuring that both high-level and low-level changes in data can be
captured.

As machine learning models become more sophisticated, their deployment en-
vironments grow increasingly complex, often presenting data with characteristics
that deviate from the norm. Conventional models, trained under the assumption
that the test data distribution will match the training data distribution, are poorly
equipped to handle such deviations. This mismatch, known as a distribution shift,
can be categorized into two primary types: semantic shifts and covariate shifts.
Semantic shifts occur when the outlier data belong to entirely different classes
than those processed during training, whereas covariate shifts arise from changes
in the input distribution, while the conditional distribution of the output given
the input remains unchanged.

The first part of this chapter delves into semantic OOD detection in the context
of melanoma diagnosis, a domain where early and accurate detection is crucial.
Melanoma, a severe form of skin cancer, presents unique challenges due to the
inherent imbalance in datasets – malignant cases are relatively rare compared to
benign cases. This imbalance complicates the training of supervised classification

121



C
hapter6

6 . O U T - O F - D I S T R I B U T I O N D E T E C T I O N

models, leading to potential misdiagnosis. This imbalance indicates that an un-
supervised Out-of-Distribution (OOD) detection approach is more appropriate.
Specifically, the distribution of the abundant benign melanoma images can be
modeled, while deviations from this distribution can be flagged as potentially
malignant.

Generative models have been widely applied to the OOD detection problem.
However, each model type possesses its own inductive biases, which may affect its
suitability for specific scenarios. Normalizing Flows (NFs) are particularly attrac-
tive for OOD detection due to their capability for explicit density modeling and
evaluation. However, it has been demonstrated that NFs tend to model local pixel
correlations rather than semantic content. Additionally, they are computationally
inefficient due to their fully bijective transformations. To address these issues, re-
cent research has proposed modeling the coefficients of a wavelet decomposition
with NFs to alleviate the significant computational cost constraint. The following
research questions are considered in the semantic OOD detection of melanoma.
Research questions for semantic shift:

• Conventional Normalizing Flows exhibit limitations in capturing and eval-
uating the semantic context. Can domain-specific knowledge of skin melanoma
be utilized to improve the detection performance of likelihood-based OOD detection
of malignant images?

• When analyzing the malignant nature of melenoma from an image, the
semantic context and lower frequency components are more important. How
can wavelet-based NFs be exploited to improve the detection of OOD melanoma
images, particularly in the context of imbalanced datasets?

To address these challenges, a novel generative model based on wavelet-based
NFs is designed to learn the benign data distribution and detect OOD malig-
nant images through density estimation. NFs are particularly suited for this task
because of their capability to compute exact likelihoods. However, their conven-
tional implementations tend to focus on apparent graphical features rather than
the semantic context, limiting their effectiveness. To address these limitations, we
enhance NFs with wavelet transforms, integrating domain-specific knowledge of
melanoma. This approach not only improves the likelihood-based detection of ma-
lignant images, but also reduces the number of parameters required for inference,
making it feasible for deployment on edge devices. The proposed method demon-
strates a significant improvement in detection performance, achieving an increase
of 9% in the Area Under Curve of the Receiver Operating Characteristic (AU-
ROC) curve. This advancement is promising for assisting medical professionals in
the accurate and early diagnosis of skin cancer and potentially improves patient
outcomes.

The second part of this chapter addresses the detection of covariate shifts,
an area that has garnered less attention compared to semantic OOD detection.
Covariate shifts entail the change in distribution of high-level image statistics
(covariates) subject to consistent low-level semantics. For example, lowering the
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applied dose in an X-ray system will exhibit an increase in noise in the resulting
image, leading to a shift in the covariance and high-level statistical image com-
ponents. A more intriguing example of covariate shift is the modeling of the ID
covariate factors under known imaging conditions with the intention to detect a
change in these factors due to a failure in the imaging system or processing chain.
Detecting these shifts is critical for maintaining the performance and reliability
imaging systems and of machine learning models consuming these images in
dynamic environments. This research into covariate shift detection calls for the
following questions. Research questions for covariate shift:

• Generative models, with their ability to capture the underlying distribu-
tion of In-Distribution (ID) data in an unsupervised manner, are capable of
detecting deviations from this learned distribution. Can generative models
effectively detect and quantify covariate shifts in natural images?

• Covariate shift affects the distribution of high-frequency
signal-dependent and independent details. How to explicitly model the high-
frequency heteroscedastic image components and does this lead to improved OOD
covariate shift detection performance?

For this second problem statement, we introduce CovariateFlow, a novel method
for OOD detection tailored to covariate heteroscedastic1 high-frequency image
components using conditional Normalizing Flows (cNFs). This approach focuses
on modeling the high-frequency signal-dependent and independent details, which
are crucial for identifying sensory anomalies and deviations in global signal statis-
tics. Extensive analyses on datasets such as CIFAR10 vs. CIFAR10-C, ImageNet200
vs. ImageNet200-C and a new X-ray dataset demonstrate the efficacy of Covari-
ateFlow in accurately detecting covariate shifts. This work enhances the fidelity
of imaging systems and supports the robustness of machine learning models in
the presence of distribution shifts.

In summary, this chapter provides a comprehensive exploration of generative
OOD detection methodologies, addressing both semantic and covariate shifts.
In Section 6.2 and Section 6.3, we propose and validate wavelet-based NFs for
semantic OOD detection of malignant melanoma. Furthermore, Section 6.4 and
Section 6.5 introduces CovariateFlow and validate its effectiveness in OOD co-
variate shift detection. The proposed methodologies offer robust frameworks for
improving OOD detection in medical and general imaging contexts. These ad-
vancements highlight the potential for generative models to enhance the reliability
and robustness of machine learning systems in diverse real-world applications.

1The variance of the residuals is dependent on a signal over a range of measured values
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6.2 Semantic case: Efficient OOD detection with wavelet-based
NFs

Melanoma is a serious form of skin cancer with high mortality rate at later stages.
Fortunately, when detected early, the prognosis of melanoma is promising and
malignant melanoma incidence rates are relatively low. As a result, datasets are
heavily imbalanced which complicate training current state-of-the-art supervised
classification AI models. We propose to use generative models to learn the be-
nign data distribution and detect Out-of-Distribution (OOD) malignant images
through density estimation. Normalizing Flows (NFs) are ideal candidates for
OOD detection due to their ability to compute exact likelihoods. Nevertheless,
their inductive biases towards apparent graphical features rather than semantic
context hamper accurate OOD detection.

In this section, we aim at using these biases with domain-level knowledge of
melanoma, to improve likelihood-based OOD detection of malignant images. The
obtained results are encouraging and demonstrate potential for OOD detection of
melanoma using NFs. The proposed method achieves an increase of 9% in Area
Under the Curve of the Receiver Operating Characteristics by using wavelet-based
NFs2. This model requires significantly less parameters for inference, making it
more applicable and suited for edge devices. The proposed methodology can
aid medical experts with diagnosis of skin-cancer patients and continuously in-
crease survival rates. Furthermore, this research paves the way for other areas in
oncology with similar data imbalance issues.

Section 6.2.1 discusses the difficulties in melanoma detection and introduces
NF-based OOD detection as a potential solution direction. In Section 6.2.3 OOD
detection using Wavelet Flow is proposed as a means to overcome the limita-
tions of NFs by focusing on the low-frequency wavelet coefficients as a proxy for
distinguishing between the semantics of benign and malignant melanoma.

6.2.1 Introduction to melanoma detection
Melanoma, a form of skin cancer, develops in the melanocytes of the skin [242].
Symptoms can develop in the form of changing moles or growth of new pigmenta-
tion. Non-cancerous growth of the melanocytes is referred to as benign melanoma
and is not harmful, while malignant melanoma is harmful. It is essential to rec-
ognize the symptoms of malignant melanoma as early as possible to classify its
malignancy in order to avoid late diagnosis and ultimately an increased mortal-
ity rate [243]. To classify melanoma malignancy, experts consider indications of
the skin pigmentation such as asymmetrical shapes, irregular borders, uneven
distribution of colors and large diameters (relative to benign melanoma) [244].
These clinical properties involve characteristics related to the texture and graphical
details on the skin.

Since most cases of melanoma are benign, the number of malignant melanoma

2Code available at: https://github.com/A-Vzer/WaveletFlowPytorch
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images are still relatively low. This data imbalance can negatively influence the
predictions of machine learning (ML) models aiming to classify melanoma ma-
lignancy. Furthermore, most state-of-the-art supervised ML models are not cali-
brated, which poses the question on their validity for reliable skin-cancer detec-
tion [245]. Ideally, query images are assigned a calibrated confidence score, which
can be interpreted as a probability of malignancy. Given these circumstances, a
sensible option is to perform likelihood-based Out-of-Distribution (OOD) detec-
tion with the abundant benign data available.

Yielding tractable distributions, Normalizing Flows (NFs) serve as an excel-
lent method for the aforementioned application. NFs are a family of completely
tractable generative models that learn exact likelihood distributions. However,
OOD detection with NFs is notoriously difficult. This is caused by its inherent
learning mechanisms that result in inductive biases towards graphical details, such
as texture or color-pixel correlations rather than semantic context in images [246].
As such, OOD data is often assigned similar or higher likelihoods than the training
data. In the first half of this chapter, it is shown that with domain-level under-
standing of melanoma, OOD detection of melanoma is improved using NFs. Since
the dominant features for indicating the malignancy of melanoma are described
by their size and texture, wavelet-based NFs are employed. To this end, we imple-
ment Wavelet Flow [247] for OOD detection of malignant melanoma and realize a
performance gain of 9% in Area Under Curve (AUC) of the Receiver Operating
Characteristics (ROC). The number of parameters can be significantly reduced
when applying Wavelet Flow for OOD detection, enabling implementation on
smaller devices.

The proposed methodology presents the potential of NFs for aiding in reliable
diagnosis of melanoma. Normalizing Flows for OOD detection and its inductive
biases are discussed in Section 6.2.2. Thereafter, the approach and method are
discussed in Section 6.3.1. The results are presented in Section 6.3.2.

6.2.2 Background to NF-based OOD detection
This section introduces the background of NFs (Subsection 6.2.2.A) and NF-based
OOD detection (Subsection 6.2.2.B). The inductive biases in NFs are discussed
in Subsection 6.2.2.C and finally the Wavelet Flow architecture is introduced in
Subsection 6.2.3.

6.2.2.A Normalizing Flows
Normalizing Flows (NFs) are a sequence of bijective transformations, typically
starting from a complex distribution, transforming into a Normal distribution.
Using Section 2.2.2 as detailed introduction to NFs, here we discuss specific prop-
erties of NFs that are addressed in the research of this semantic shift section.

Formally, the log-likelihood log p(x) of a sample from the Normal distribution
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subject to an NF transformation fi : R 7→ R is computed with

log p(x) = log pN (z0)−
K∑
i=1

log

(∣∣∣∣det dfi
dzi−1

∣∣∣∣) , (6.1)

where the latent sample zi is from the i-th transformation in the K-step NF and
parameter pN the base Normal probability distribution. Due to the bijective rela-
tion of the transformations, Eq. (6.1) can be used to sample from pN and construct
a visual image with known probability. This transformation is referred to as the
generative direction. Alternatively, an image can also be transformed in the nor-
malizing direction (towards pN ) to obtain a likelihood on the Normal density.
Training in the normalizing direction is performed through Maximum Likelihood
Estimation (MLE). Recently, many types of NFs have been proposed [89], [248]–
[251]. Better flows are generally more expressive, while having an computation-
ally inexpensive Jacobian determinant. For a more comprehensive explanation on
NFs, the reader is referred to Section 2.2.2. A widely used choice of an NF step is
coupling flows, such as RealNVP and Glow [91], [206]. The latter has been chosen
as a baseline because it was SOTA at the time of the conducted experiments.

6.2.2.B Out-of-Distribution detection
The properties of NFs make them ideal candidates for OOD detection. Maximizing
the likelihood of the data distribution p(x) through a bijective transformation on
pN shifts likelihoods of OOD data, when the density is normalized. Nevertheless,
NFs assign similar likelihoods to train and (in-distribution) test data, indicating
that flows do not overfit. This also suggests that not all OOD data receive low
likelihoods. Ultimately, the assigned likelihoods are heavily influenced by the
inductive biases of the model. Many NFs have inductive biases which limit their
use for OOD detection applications [246], [252].

6.2.2.C Inductive biases in coupling flows
Inductive biases of a generative model determine the training solution output and
thus OOD detection performance. The input complexity plays an important role
in OOD detection. Likelihood-based generative models assign lower likelihoods
to more textured images, rather than simpler images [253]. The widely accepted
affine coupling NF is used in this research study. Kirichenko et al. [246] show that
structural parts such as edges can be recognized in the latent space. This suggests
that this type of flow focuses on visual appearance such as texture and color of
the images, as opposed to the semantic content. Furthermore, the authors present
coupling-flow mechanics that cause NFs to fail at OOD detection. This concept
is briefly discussed below to keep the section self-contained, but the reader is
encouraged to address the original work.

Given image x, coupling flows are masking the image partly (xm) and update
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it with parameters depending on the non-masked part xres, which is described by

xm = (xm + T (xres)) · eS(xres), (6.2)

where S and T are parameterized functions that output the scale and translation
parameters, respectively. The log-Jacobian determinant in Eq. (6.1) for coupling
flows is calculated by

log

(∣∣∣∣det
dfi

dzi−1

∣∣∣∣) = −
D∑
i=1

Si(xres), (6.3)

where i iterates over the image dimensionality D. Naturally, function S is defined
to predict high values in Eq. (6.2) to maximize the log-likelihood in Eq. (6.1). To
compensate for this, function T should predict values that are an accurate ap-
proximation of −xm. Therefore, the NF assigns high likelihoods to images when
the flow can accurately predict the masked part of the image. This can enable
solutions that assign high likelihoods to any structured image, regardless of its
semantic contents. Two mechanisms are identified to drive the accurate prediction
of masked pixels and therefore assign higher likelihoods to OOD data. These
mechanisms are: (1) learning local color-pixel correlations and (2) information
on masked pixels encoded in previous coupling layers, known as coupling layer
co-adaptation. For the latter, different masking strategies such as cycle masking
can be used to deprive the model from information in previous coupling-layer
iterations [246]. Hence, experiments are performed with masking strategies to
counteract coupling-layer co-adaptation. An example with the opposite effect to
cycle masking, is checkerboard masking [91]. Masking in this manner means that
the predicted pixels are conditioned on its direct neighbouring pixels. Contin-
uously, this encourages the NF to leverage local pixel correlations and further
hinders semantically relevant OOD detection.

6.2.3 Wavelet Flow
Yu et al. [247] introduced the Wavelet Flow architecture (Figure 6.1) for efficient
high-resolution image generation. Instead of learning the image pixel likelihoods,
the network models the conditional distribution with a coupling NF, specified by

p(x) = p(L0)

N−1∏
i=0

p(Di|Li), (6.4)

where Di and Li are the detail and low-frequency components of the Haar decom-
position, respectively, while N represents the number of decomposition stages.
During inference, an independent sample from p(L0) is upscaled with the inverse
Haar transform, using the predicted wavelet coefficients. At the time of research,
this architecture was not yet tested for OOD detection. Modeling the wavelet coef-
ficients further guides the model to consider the characteristic details of the image.
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Figure 6.1 Conceptual diagram of the Wavelet Flow architecture. At each decomposition level, the
likelihood of the high-frequency wavelet coefficients are learned conditioned on the low-frequency
decomposition. Probability density p(L0) is modeled unconditionally.

As discussed in Section 6.2.1, melanoma can be distinguished by the texture of
the skin. As a result, this inductive bias can improve OOD detection of melanoma.
Furthermore, the high-frequency (detail) coefficients of the image makes it eas-
ier to distinguish between highly textured malignant and less structured benign
melanoma. This can facilitate better OOD detection, since NFs tend to assign
higher likelihoods to smoother images.

6.3 Semantic case: Method to OOD melanoma detection
Subsection 6.3.1 details the proposed approach to melanoma OOD detection and
in Subsection 6.3.2 the results of the conducted experiments are discussed.

6.3.1 Melanoma detection with Wavelet Flow
As discussed in Section 6.2.2.C, the inductive biases of coupling NFs restrict their
OOD detection capabilities. Given this information, we improve this by changing
the data and model architecture. The proposed approach is tested on the ISIC
dataset [254]. In this application, it can be beneficial that generative models assign
higher likelihoods to less complex images, because benign melanoma are less
textured and smaller in radius [244]. Initially, the RGB images are downscaled to
128×128 pixels and trained on the GLOW architecture naively, in a multi-scale set-
ting, with default parameters K=32 and L=3. The AUCROC is used to evaluate the
model performances. The color channels are heavily correlated and influence the
likelihoods adversely, as discussed in Section 6.2.2.C. Therefore, we use grayscale
images to hinder exploitation of local color-pixel correlations, as well as to reduce
training complexity. Thereafter, the Wavelet Flow concept is employed. This shifts
the optimization from the image pixels to their wavelet coefficients. This optimiza-
tion will further bias the model towards the detailed semantic appearance of the
images, since the tumor malignancy will become even more distinguishable by its
textural description. Additionally, we experiment with different masking strate-
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Figure 6.2 Illustration of various masking strategies employed in the coupling-flow transformation.
The masks vary at each coupling-flow step. The white area indicates the input of the S, T -network,
which predicts parameters for the masked areas (indicated in black color). Grayscale areas are
disregarded in the coupling-flow process.

gies (see Figure 6.2). With the Wavelet Flow framework, we obtain a likelihood
and thus an AUROC score per decomposition scale. The individual likelihoods
are averaged over all scales that contain sufficient information about the original
contents of the image. In this case, these are wavelet coefficients from 4×4 pixel
dimensions up and until the highest decomposition level. As a suggestion for
future work, it may be beneficial to select only particular scales with good AU-
ROC values. However, this concept would require supervision, i.e. access to the
malignant class, which is beyond the scope of this research.

6.3.2 Results and discussion on melanoma detection
Table 6.1 presents the AUROC curves for the various tested models. Likelihood
distributions of the GLOW architecture trained on color images are shown in
Figure 6.3. Firstly, it can be observed that the train and test sets coincide well,
indicating the absence of over-fitting. When comparing the benign test to the
malignant likelihoods, we obtain an AUROC of 0.73. This solution is suboptimal
since many benign images are assigned a high negative likelihood score (long

Architecture K L Channels Masking AUROC ↑ No. parameters ↓
GLOW 32 3 RGB Affine 0.73 159M
GLOW 32 3 Gray Affine 0.74 9.51M
GLOW 32 1 RGB Affine 0.72 3.47M
GLOW 32 1 Gray Affine 0.75 2.57M
Wavelet Flow 32 1 Gray All 0.78 2.50M
Wavelet Flow 32 1 Gray Checker 0.78 2.87M
Wavelet Flow 32 1 Gray Horizontal 0.78 2.87M
Wavelet Flow 32 1 Gray Cycle 0.78 2.87M
Wavelet Flow 32 1 Gray Radial 0.78 2.87M
Wavelet Flow 16 1 Gray All 0.78 1.25M

Table 6.1 Test set results of the GLOW and Wavelet Flow models trained on the ISIC dataset
for various hyperparameters. For Wavelet Flow, the number of parameters are that of the highest
decomposition level as each level can be trained independently. Gray indicates grayscale image input.
The best scores are printed in bold.
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Figure 6.3 Likelihood distribution and ROC curve of the trained GLOW architecture (baseline
model).

tail). In the same likelihood range, most of the malignant images are present as
well. This is because the model learns color-pixel correlations, which can be used
to leverage accurate predictions of the masked latent variables in the coupling
layers. As a result, this leads to lower negative likelihoods assigned to OOD data.

When training on the wavelet coefficients with Wavelet Flow, there is a sub-
stantial improvement on several decomposition scales (see Figure 6.4). At all
decomposition scales, besides the level seven (corresponding to the highest im-
age resolution), an improvement in test evaluation is observed. The best AUROC
values are found from the 3rd up until the 6th decomposition scales. At these
levels, the wavelet coefficients represent the most relevant frequency components
of benign and malignant melanoma. As expected, the lowest decomposition scales
contain almost no relevant information on the malignancy of melanoma and have
very low AUCROC values. In Figure 6.5, we average the likelihoods over the rele-
vant decomposition scales and obtain a higher 0.78 AUROC score on the test set.
In a separate evaluation, we have performed OOD detection using only the magni-
tude of the wavelet coefficients in which we observed acceptable AUROC values
on individual scales. However, in contrast with Wavelet Flow, averaging over
the decomposition scales is working adversely, making this approach infeasible.
Furthermore, the different masking strategies do not improve performance.

Figure 6.6 illustrates the model’s ability to distinguish between benign and
malignant melanoma samples based on averaged negative likelihood values. As
can be observed in the figure, benign and malignant samples exhibit distinct
patterns along the likelihood axis. Notably, at smaller negative likelihood values,
the visual features of malignant samples resemble those of benign melanomas,
especially in terms of pigmentation and texture. This suggests that early-stage
malignancies can appear similarly to benign samples, making it challenging for
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Figure 6.4 Likelihood distributions per Haar wavelet decomposition level

the model to identify them as OOD.
As the negative likelihood increases, more prominent texture patterns emerge,

often characterized by darker, splattered pigmentation and increased hair cover-
age. These traits align with known visual indicators of malignancy, particularly
irregular pigmentation and surface texture. While the presence of larger area of
pigmentation alone is not necessarily indicative of malignancy, darker and more
complex textures are key features that the model successfully identifies. The model
assigns higher negative likelihood values to these malignant cases, recognizing
them as OOD.

Interestingly, in cases where hair significantly obscures the lesion, the model
can misclassify benign samples, assigning them higher negative likelihoods. This
can occur due to the increased high-frequency details in the wavelet domain,
which the model interprets as complexity, thus inflating the likelihood score. Such
misclassifications align with previous findings in OOD detection, such as those
presented by Serrà et al. [253], where likelihood estimates are impacted by the

Figure 6.5 The likelihood distribution and AUROC curve of the trained Wavelet Flow architecture,
averaged over the decomposition scales
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complexity of the input. To correct for such instances, a complexity adjustment
that accounts for the presence of hair could help reduce false positives. Hairy
benign images, which may currently receive inflated negative likelihood scores
due to their texture complexity, would be shifted to more appropriate smaller
negative likelihood ranges. For more clearly visible malignant melanoma sam-
ples, the model relies on features beyond pigmentation size and hair presence,
indicating that its inductive biases allow it to effectively capture key diagnostic
information. This property equips it with the ability to differentiate between ID
benign samples and OOD malignant melanoma with improved accuracy, despite
occasional challenges posed by occlusion or image complexity.

Overall, the model’s performance demonstrates that it can distinguish between
benign and malignant patterns in the wavelet domain, although it may benefit
from further refinement in handling cases where hair or other factors obscure
the underlying melanoma. The inclusion of a complexity term could potentially
improve the model’s robustness in such cases, while still leveraging its ability to
capture critical melanoma features that define malignancy.

Figure 6.6 Images of benign and malignant melanoma at various likelihoods. Note that lower
likelihoods are either malignant or highly textured benign melanoma.

In conclusion, late diagnosis of melanoma poses high risks for patients with
skin cancer. Early detection of malignant melanoma with machine learning is
highly valuable, but is difficult due to data imbalance caused by its relatively
low occurrence. We have learned the benign image data distribution with Nor-
malizing Flows to perform Out-of-Distribution (OOD) detection. It is shown that
with knowledge on melanoma and the inductive biases of Normalizing Flows,
we can improve likelihood-based OOD detection with wavelet-based Normaliz-
ing Flows. Furthermore, we have demonstrated that memory requirements for
OOD detection can be reduced significantly with Wavelet Flow, enabling the de-
ployment on edge devices. It is recommended to include a term in the likelihood
calculations that corrects for the presence of hair in future work. The proposed
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methodology focuses solely on melanoma, however, it is suggested that further
research should aim at facilitating exact likelihood-based OOD detection for other
areas of oncology featuring large data imbalances to improve detection accuracy.

6.4 Covariate case: Generative models for OOD covariate shift
detection

6.4.1 Introduction to covariate shift
Identifying abnormal image statistics is critical for deploying precise sensing
technology and reliable machine learning. Out-of-Distribution (OOD) detection
methods are modeling the available data or a set of In-Distribution (ID) features,
to identify test examples drawn from a different distribution. Notably, generative
models offer an unsupervised paradigm to model distributions without making
explicit assumptions on the form of the OOD data. With a plethora of possible
covariates (abnormal variations in high-level image statistics) and potential down-
stream machine learning image applications, unsupervised generative modeling
is a promising approach for general OOD detection. The prevailing approaches
for OOD detection predominantly focus on the semantic contents of the image
data, with little to no consensus over covariate shift. Therefore, this study eluci-
dates covariate shifts, i.e. the change in distribution of high-level image statistics
(covariates) subject to consistent low-level semantics.

Figure 6.7 In-Distribution ImageNet200 samples and different degradations and with growing
severity levels of ImageNet200-C to the right as OOD.

Likelihood-based methods, such as Normalizing Flows (NFs), offer an intu-
itive way of OOD detection by evaluating the likelihood of test samples. However,
as evidenced in previous research [252], NFs have exhibited limitations in effec-
tive OOD detection, often assigning higher likelihoods to OOD samples. Various
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works have explored this phenomenon and proposed alternative methods to direct
likelihood estimation [255], [256]. Recent theoretical investigations [257] indicate
that these methodologies are inherently susceptible to certain types of OOD data.
Moreover, the metrics employed for evaluation exhibit a predisposition towards
specific categories of OOD data, suggesting an intrinsic limitation of the current
approach to OOD detection. In this study, we explore this phenomenon while
improving the covariate OOD detection capabilities of NFs. Additionally, this
shortcoming is addressed by proposing to unify the log-likelihood (LL)-based
metric with the typicality score [258] in a simple Normalized Score Distance (NSD).
Other generative models have been applied in various contexts to the task of
semantic OOD detection, ranging from density-based methods [91], [259], [260] to
different reconstruction-based models [261]. However, OOD covariate shift within
the context of generative models remains largely unexplored.

Figure 6.8 Illustration of in-domain covariate shift (Near OOD) vs. covariate shift across domains
(Far OOD). The shift is depicted in terms of popular computer vision datasets.

We indicate two branches of covariate shift: (1) domain covariate shift, such as
images in different styles (e.g. natural vs. sketch) and (2) domain-specific covariate
shift (also known as sensory anomalies [260]), images under different sensing
conditions (e.g different lighting, cameras or sensor-level degradation (Figure 6.7).
Covariate shifts are recognized for their potential to significantly degrade the pre-
dictive performance of the model, where in some specialized imaging applications
it can indicate system failure. Detecting these covariate factors and the distribu-
tion shifts under consistent semantic content [262] will enhance the safety and
reliability of imaging systems in diverse fields and the machine learning systems
being trained with these images [263]–[265]. This necessitates covariate shift de-
tection, and if possible, the quantification of its severity. To this end and to the best
of our knowledge, we are the first to implement unsupervised, domain-specific
OOD covariate shift detection.

Images across different applications can demonstrate complex noise patterns
and variability due to factors such as equipment variations, environmental condi-
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tions, and the specific nature of the imaged objects or scenes [266]. A novel and
effective strategy for improving OOD detection should utilize the data-dependent
(heteroscedastic) noise that is present in the signal. This inherent noise serves as a
rich source of information that can be exploited to differentiate between ID and
OOD samples. In fact, the noise patterns in images can encode subtle differences
that may not be apparent from the semantic content in the image alone.

To address these challenges and leverage the nuanced information encoded in
noise patterns across various imaging applications, this work proposes a stream-
lined approach that models the conditional distribution between low-frequency
and high-frequency signal components. This method contrasts with conventional
techniques that attempt to model the entire signal distribution, which may inad-
vertently obscure critical covariate details. We employ a simple filtering approach
that decomposes the image into distinct low-frequency and high-frequency com-
ponents. By focusing on the interaction between these frequency components, the
proposed approach effectively detect covariate shifts.

To define the research direction of this section, the original direction at the
beginning of the chapter are recalled here. The research aims to determine if
generative models can effectively detect and quantify covariate shifts in natural
images. Additionally, it is known that covariate shift affects the distribution of
high-frequency signal-dependent and independent details and, as such, how can
these high-frequency heteroscedastic image components explicitly be modeled to
improve OOD covariate shift detection performance.

This section delves into the concept of OOD covariate shift detection with a
focus on generative models. A background on covariate shift is presented in Sec-
tion 6.4.2, which additionally discusses semantic OOD detection techniques and
introducess Normalizing Flows (NFs) and the concept of Typicality. The proposed
approach to OOD Covariate Shift Detection is presented in Section 6.5, where
the definition of covariate shift is revisited, and CovariateFlow (Section 6.5.2) is
introduced. This section also discusses how to unify Log-likelihood and Typical-
ity (Section 6.5.2.A) and provides an overview of the datasets used. Section 6.5.3
details the evaluation metrics and models employed, followed by an analysis of co-
variate shift in CIFAR10 and ImageNet200. The chapter then provides a discussion
on covariate shift in natural images (Section 6.5.4), exploring its implications and
challenges. The final sections cover the future Work and limitations (Section 6.5.5),
and a specialized study on covariate shift in X-ray images (Section 6.5.6), including
details on the X-ray dataset (Section 6.5.6.A) and results from the experiments
(Section 6.5.7). The chapter concludes with a comprehensive summary on the key
findings and contributions from both the semantic OOD detection and covariate
shift detection research.

6.4.2 Background on covariate shift
Since detecting covariate shift is under explored, in Subsection 6.4.2.A state-of-the-
art methods for semantic OOD detection are discussed. Subsection 6.4.3 introduces
covariate shifts and hightlights the different application areas for which detecting
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covariate shift is an attractive option. Subsection 6.4.4 briefly introduces Normal-
izing Flows and in Subsection 6.4.5 the concept of Typicality is introduced as an
alternative approach to detecting semantic OOD concepts.

6.4.2.A Semantic Out-of-Distribution detection
Approaches to OOD detection are generally divided into two categories: super-
vised, which necessitates labels or OOD data, and unsupervised, which relies solely
on ID data. Although semantic OOD detection does not constitute the core focus
of this study, we nevertheless provide a concise overview of the recent devel-
opments, since these methodologies hold the potential to translate to covariate
OOD detection. For an in-depth exploration of OOD detection methodologies, the
reader is referred to the comprehensive review by Yang et al. [260].

Explicit density methods
A straightforward method for OOD detection involves the use of a generative
model, p(x; θ) parameterized by θ and trained to fit a given distribution over data
x. The process evaluates the likelihood of new, unseen samples under this model
with the underlying assumption that OOD samples will exhibit lower likelihoods
compared to those that are ID. The Evidence Lower Bound (ELBO) employed in
Variational Auto Encoders (VAEs) [259] can be used for OOD detection by evalu-
ating a lower bound on the likelihood of a test sample. Plumerault et al. [267] intro-
duced the Adversarial VAE – a novel approach that marries the properties of VAEs
with the image generation quality of Generative Adversarial Networks (GANs),
thereby offering a robust auto-encoding model that synthesizes images of compa-
rable quality to GANs, while retaining the advantageous characteristics of VAEs.

Unlike VAEs, Normalizing Flows (NFs) [49] offer exact and fully tractable
likelihood computations. With the introduction of coupling layers [91], NFs can be
arbitrarily conditioned and seem to be excellent contenders for conditional OOD
detection. However, as evidenced in previous research [268], NFs have exhibited
limitations in effective OOD detection, often assigning higher likelihoods to OOD
samples. This limitation has been associated with an inherent bias in flow model
architectures, which tends to prioritize modeling local pixel correlations over the
semantic content of the data [252].

Exploration by Gratwohl et al. [256] and Nalisnick et al. [255] posits that this
phenomenon can be attributed to the fact that ID images are not high-likelihood
samples but, rather, constituents of the typical set of the data distribution. Con-
sequently, the investigation into methods that assess the typicality [258] of data
instances, as an alternative to direct likelihood estimation, has gained traction.
Despite empirical evidence demonstrating the efficacy of typicality in OOD bench-
marks [258], recent theoretical investigations [257] indicate that these methodolo-
gies have inherent susceptibilities to specific OOD types and an evaluative bias
towards particular OOD categories, thereby underscoring the complexity of OOD
detection.
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Image reconstruction-based methods
These OOD detection methods are based on the principle that models are less
effective at accurately reconstructing data that significantly deviates from the
training distribution. Graham et al. [269] improve on an innovative approach to
OOD detection that leverages the potent generative prowess of recent denoising
diffusion probabilistic models (DDPMs) [15], [270]. Unlike prior reconstruction-
based OOD detection techniques that necessitated meticulous calibration of the
model’s information bottleneck [271]–[273], their method utilizes DDPMs to re-
construct inputs subjected to varying degrees of noise. This work implements this
DDPM method as baseline for OOD covariate shift detection.

6.4.3 Previous work in detecting covariate shift
In essence, covariate shift refers to the phenomenon where images share consistent
semantic content (i.e. similar subjects), and yet, are captured under varying imag-
ing conditions. The degree of variation in these conditions signifies the magnitude
of the shift. For example, a minor shift may involve images of a subject under
varying lighting conditions, while a more substantial shift, such as transitioning
from natural images to graphical sketches of the same subject, exemplifies a tran-
sition towards domain shift (Figure 6.8). This section concentrates on in-domain
covariate shifts, as these scenarios represent instances where machine learning
silently fails [263]–[265], [274].

In related work on covariate shift detection, Averly et al. [275] adopt a model-
centric approach to address both covariate and semantic shifts, suggesting a
methodology for identifying instances that a deployed machine learning model,
such as an image classifier, fails to accurately predict. This strategy implies that
the decision to detect, and potentially exclude a test example, is dependent on
the specific model in question. While being effective for well-established machine
learning models, this method inherently links the detection of shifts to the pecu-
liarities of the individual model, resulting in each model having its unique set of
criteria for rejecting data, which may vary broadly, even when applied to the same
dataset. A significant drawback of this approach is its reliance on a robust pre-
trained model, which poses a challenge for scenarios where identifying covariate
shift is the primary objective, leaving such cases without a viable solution.

Generalized ODIN [276] is another direction of work that adopts the model-
centric approach. This method replaces the standard classification head, and in-
stead, decomposes the output into scores to behave like the conditional probabil-
ities for the semantic shift distribution and the covariate shift distribution. This
approach is then only evaluated on out-of-domain covariate shift such as the Do-
mainNet [277] benchmark. Follow-up work by Tian et al. [262] further explores
calibrating the confidence functions proposed in [276], which realize improve-
ments on both semantic and covariate OOD detection. They additionally apply
their refinement on in-domain covariate shift, such as CIFAR10 vs. CIFAR10-C.

Besides the above-mentioned work, covariate shift has been studied predomi-
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nantly from a robustness perspective [263] or in a domain adaptation setting [278],
[279]. The defense against adversarial attacks [265] is another research direction
that falls in the domain of covariate shift. This perspective stems from the recogni-
tion that adversarial examples, by nature, often represent data points that deviate
significantly from the distribution observed during model training, thereby induc-
ing a form of covariate shift. Researchers have leveraged insights from adversarial
robustness [265] to devise methods that can identify and mitigate the effects of
such shifts, focusing on enhancing model reliability and security against delib-
erately crafted inputs designed to deceive. Fortunately, the shift introduced is
completely artificial and typically a shift targeted at a specific model.

6.4.4 Normalizing Flows (NFs)
Consider an image sampled from its intractable distribution as x∼PX. Addition-
ally, we introduce a simple, tractable distribution pZ of latent variable z (which is
usually Gaussian). Normalizing Flows utilize K consecutive bijective transforma-
tions fk : RD → RD as f = fK ◦ . . . ◦ fk ◦ . . . ◦ f1, to express exact log-likelihoods
by

log p(x) = log pZ(z0)−
K∑
k=1

log

∣∣∣∣det dfk(zk−1)

dzk−1

∣∣∣∣ , (6.5)

where zk and zk−1 are intermediate variables, and z0 = f−1(x).
Numerous bijections have been introduced which balance expressivity and

have a simple evaluation of the Jacobian determinant in Equation (6.5). Specifically,
coupling flows have seen much success [91], [280]. Since they can be parameter-
ized through arbitrary complex functions, we explore conditioning the flow on
the frequency components of an image.

6.4.5 Typicality
Examining sequences of N independent and identically distributed (i.i.d.) data-
points xn, the typical set comprises all xn that satisfy

H(X)− ϵ ≤ − 1

N

N∑
n=1

log2 p(xn) ≤ H(X) + ϵ, (6.6)

where ϵ represents an arbitrary small value and H(X) denotes the Shannon en-
tropy of the dataset. In other words, the empirical entropy of the set approaches
the entropy of the source distribution. Leveraging the Asymptotic Equipartition
Property (AEP), it is deduced that

1

N

N∑
n=1

log2 p(xn) → H(X) forN → ∞, (6.7)

leading to the conclusion that the probability of any sequence of i.i.d. samples
of sufficient length approaches unity. Thus, despite the typical set representing

138



C
ha

pt
er

6

6.5. Covariate case: Method to OOD covariate shift detection

merely a small subset of all potential sequences, a sequence drawn from i.i.d.
samples of adequate length will almost certainly be considered typical [281].

In various studies, indications have emerged that NFs perform poorly when
the likelihood is utilized as a metric for detecting OOD samples [252], [257], [268],
[282]. It can be argued that datasets are a typical sequence of samples, rather than
high in likelihood, also known as the Typical Set Hypothesis (TSH). Therefore,
in the recent work by Nalisnick et al. [255], an innovative approach is proposed
for OOD detection that leverages typicality as an evaluation metric in lieu of like-
lihood. This methodology has been further refined in subsequent studies [256],
introducing approximate mass. Motivated by the fact that typical samples are lo-
calized in high-mass areas on the PDF, the metric evaluates the gradient of the
LL w.r.t. the input data, also known as the score. The value of this score can be
expressed mathematically as

Typicalityscore = ∥∂L(x; θ)/∂x∥ , (6.8)

where x denotes the input, L is the evaluated LL by the model parameterized by
θ, and ∥.∥ represents the Euclidean norm. Despite some criticism on TSH [257],
this metric demonstrates superior performance in OOD detection across various
benchmarks [256], [258].

6.5 Covariate case: Method to OOD covariate shift detection
In this section a formal definition for covariate shift in terms of low-frequency
and high-frequency components are provided (Subsection 6.5.1), followed by an
overview to the proposed CovariateFlow in Subsection 6.5.2. Subsection 6.5.3
details the experiments conducted to validate the proposed approach and in Sub-
section 6.5.4 the results from these experiments are discussed. Subsection 6.5.5
suggest future avenues for research and improvements to covariate shift detection
in natural images. The same CovariateFlow approach is extended to the X-ray
domain to detect perturbations in imaging statistics in Subsection 6.5.6 and the
results from these experiments are discussed in Subsection 6.5.7.

6.5.1 Definition of Covariate Shift
Formally, semantic- and in-domain covariate shifts can be delineated as follows.
Consider samples from the training distribution, x ∼ PX, and anomalous data
from an OOD source x̂ ∼ PX̂. These are subject to a low-pass filter (gL, gL : R → R)
to obtain the low-frequency components, xL = gL(x) and the high-frequency com-
ponents xH = x − gL(x). Semantic shift is characterized by a discrepancy in the
marginal probability distributions, PXL ̸= PX̂L

, when the conditional probability
distributions of high-frequency components remain consistent, PXH|XL ≈ PX̂H|X̂L

.
Conversely, covariate shift is identified when the conditional probability distri-
butions diverge, PXH|XL ̸= PX̂H|X̂L

, but the marginal probability distributions of
the low-frequency components remain the same PXL ≈ PX̂L

. Furthermore, these
definitions hold with in the supervised setting with predefined targets (Y).
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6.5.2 CovariateFlow
In the development of methodologies for detecting covariate shift within datasets,
several critical factors should be meticulously considered to ensure efficacy and
accuracy. Firstly, the process of resizing images can significantly alter the distri-
bution of high-frequency statistics, potentially obscuring key data characteristics.
Secondly, the inherent nature of encoding architectures, which essentially func-
tion as low-pass filters [283], may constrain their capacity to fully capture the
complex distribution of noise present within the data. This limitation is particu-
larly relevant as covariate shifts often manifest through alterations in the general
image statistics, thereby necessitating a method capable of discerning such nu-
ances. Thirdly, the utilization of only log-likelihood-based evaluation in NFs, has
proven a predisposition towards low-level semantics and is more sensitive to
high-frequency statistics [252]. An effective method should be sensitive to co-
variate shifts affecting all frequency bands, from noise degradations to contrast
adjustments.

Figure 6.9 High-level diagram of the CovariateFlow model architecture introduced in this section.
The test image is decomposed into low-frequency and high-frequency components using a Gaussian
filter. The high-frequency components are transformed into a Normal distribution through a series
of flow steps that are conditioned on the low-frequency image components.

In light of the above considerations, Normalizing Flows (NFs) emerge as a
particularly suitable candidate for modeling the imaging features essential for
detecting covariate shift. NFs are distinct as they abstain from any form of down-
sampling or encoding processes to preserve their bijective property. It is also recog-
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nized that NFs prioritize pixel correlations over semantic content [252]. However,
given the expectation that covariate shift involves changes in high-frequency im-
age statistics, accurately modeling the complete image distribution (including
both low-frequency semantics and high-frequency components) presents signif-
icant challenges. This is especially due to the relatively limited capacity of NFs
compared to more recent generative models [15], [270], [284].

To re-position our focus on leveraging generative models for covariate shift
detection rather than image generation, two key approaches can be considered.
(1) Utilize state-of-the-art methods with enhanced modeling capacity, which could
maximize the model’s overall performance. (2) Prioritize simplifying the objective
by concentrating solely on the components essential for effective covariate shift
detection. The latter approach reduces complexity and tailors the model specifi-
cally to the task at hand, potentially offering a more efficient solution. To detail the
proposed approach, we introduce a novel method that simplifies the modeling of
components informative for covariate shift detection. The proposed approach in-
volves a filtering strategy that divides the image into separate low-frequency and
high-frequency components, thereby allowing the detection system to concentrate
specifically on the high-frequency elements to improve detection capabilities.

More formally, consider an input signal x and the low-pass filter gL, the high-
frequency components of x are xH = x− gL(x), given the low-frequency compo-
nents are computed by xL = gL(x). By recognizing that certain high-frequency
components are correlated with low-frequency signals, we can model this relation-
ship conditionally. Based on this premise, we develop the CovariateFlow model
(Figure 6.9), which constitutes a novel approach of modeling the conditional distri-
bution between high-frequency and low-frequency components using conditional
NFs specified by

log p(xH|xL) = log pZ(z0)−
K∑
k=1

log

∣∣∣∣det dfk(zk−1,xL)

dzk−1

∣∣∣∣ . (6.9)

This formulation sets the foundation for a detection system that is finely tuned to
the nuances of covariate shift, enhancing its ability to identify and respond to shifts
in high-frequency image statistics. The proposed model is predominantly defined
by (1) a signal-dependent layer (SDL) [285], (2) conditional coupling flow [280],
(3) an unconditional 1×1 convolutional (conv.) layer [206] and (4) uniform de-
quantization. The SDL layer and conditional coupling layer are specifically con-
ditioned on xL. The 1×1-convolution and conditional coupling flow is repeated
K times, depending on the dataset at hand. We employ a Gated ResNet [286] as
fΘ and a checkerboard masking strategy [91] in our coupling layers. Figure 6.9
depicts a high-level overview of the CovariateFlow model architecture. We em-
ploy a simple Gaussian filter for gL, to decompose the signal into low-frequency
and high-frequency components. To minimize any assumptions about the high-
frequency components, we use a conventional Gaussian kernel. A kernel with a
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standard deviation (σ) of unity has empirically proven to yield the best perfor-
mance. The coupling layers are depicted in Figure 6.10 and the model involves
a mere 945,882 trainable parameters with K=8 resulting in 16 coupling layers
(Figure 6.10 is employed 8 times). For a detailed description on training details,
ablation experiments and inference time comparisons, the reader is referred to
Appendix D.7 in the supplementary part of this thesis. The code for the model is
publicly available3.

Figure 6.10 Processing diagram of the conditional affine coupling layer (2 layers depicted, in total
8 of such stages) in the third block of Figure 6.9. Function fΘ(x, c) details the neural network
transforming the image. In the figure, u1 and u2 refer to the different masked parts of the incoming
image and v1 and v2 their transformed variants. (Conc. = concatenation)

6.5.2.A Unifying Log-likelihood and Typicality
The inductive bias of NFs towards structural complexity when evaluating with a
log-likelihood (LL) function has been discussed in Section 6.4.5. As an alternative,
evaluation on typicality using the gradient of the LL w.r.t. the input data, has
shown improvements in semantic OOD detection over using LL solely [258], [287].
However, it has been found in literature that the metric and model are similarly
biased towards certain categories of data [257]. As such, we propose to combine
the LL evaluation with the Typicality score (Eq. 6.8) to overcome the limitations of
each individual approach. The proposed approach normalizing both the LL and
the typicality scores in terms of their respective training statistics to zero mean
and unity variance. After normalization, we can transform each metric into an
absolute distance from the expected mean. The LL distance and Typicality score
distance can then simply be added to obtain a unified distance. In this manner,
the evaluation is sensitive to all statistical deviations, rather than only being lower
in score, thereby reducing the effect of the biases of the respective metrics.

The above-mentioned discussion on computing and normalization of the the
LL and Typicality distances is presented more formally here. Again, we consider

3https://github.com/covariateflow/CovariateFlow
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a sample x ∼ PX with log-likelihood log p(x). Furthermore, the magnitude of
the gradients is denoted as ||∇x log p(x)||, i.e. the typicality score. The means for
the empirical likelihoods are determined through µL = EPX

[log p(x)], and of the
Typicality scores with µT = EPX

[ ||∇x log p(x)|| ]. Similarly, the variances of the
LL and Typicality are denoted by σ2

L = EPX
[(x− µL)

2] and σ2
T = EPX

[(x− µT )
2],

respectively. Finally, the Normalized Score Distance (NSD) is then obtained for a
new sample x∗ as the summation of the standardized L1-norms by computing

NSD(x∗) =

∣∣∣∣ log p(x∗)− µL
σL

∣∣∣∣+ ∣∣∣∣ ||∇x log p(x
∗)|| − µT

σT

∣∣∣∣ . (6.10)

Figure 6.11 depicts the individual scores (LL and Typicality) and then the
resulting NSD for two separate degradation types on CIFAR10 and using the
GLOW architecture (Baseline architecture from the beginning of this chapter).
This experiment is conducted to visualize the limitations of each individual metric
and illustrate how the proposed NSD overcomes these limitations, utilizing the
strengths of each metric.

6.5.2.B Datasets
CIFAR10(-C) & ImageNet200(-C): CIFAR10 [288] and ImageNet200 with their
respective corrupted (C) counterparts, CIFAR10-C [289] and ImageNet200-C [289],
serve as exemplary datasets for developing and evaluating unsupervised covariate
shift detection algorithms. CIFAR10 and ImageNet200 provide a collections of
images that encompass a broad range of in-distribution covariate shifts, ensuring a
suitable level of diversity. However, the corrupted versions introduce real-world-
like (undesired) degradations, such as noise, blur, weather, and digital effects.
Figure 6.7 depicts 3 of the 15 effects employed in the ImageNet200-C dataset.
Images are utilized in their original resolution at 64×64 pixels. CIFAR10-C consists
of 19 corruptions in total with images at 32×32 pixels. This setup enables testing
the detection performance of covariate shift across multiple distortion types and
severity levels.

In all the conducted experiments, we train the models only on the original
dataset training set and then test it against all corruptions at every severity level.
For CIFAR10, this is the original test set of the dataset (ID test) and CIFAR10-
C’s 19 corruptions at 5 severity levels (95 OOD test sets). Similarly, we treat the
ImageNet200 test set as ID test and the 15 corruptions at 5 severity levels from
ImageNet200-C as 75 OOD test datasets. The datasets follow the OpenOOD [290]
benchmarks4.

6.5.3 Experiments
This section describes the conducted experiments and presents the key results
obtained in the investigation. Further detailed experimental results can be found

4https://github.com/Jingkang50/OpenOOD
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Figure 6.11 Visual diagram of graphically adding Log-likelihood (Bits per dimension) and Typicality
(Gradient) score, resulting in the NSD value at the right. The top row depicts CIFAR10 + Gaussian
Noise 5 and the bottom row CIFAR10 + Gaussian Blur 5. In the first column (LL), the first metric
separates best noise-based degradation, but fails at blur, while in the second column (typicality) fails
at noise but succeeds at detecting blur. NSD successfully distinguishes between CIFAR10 test and
both degradation types.

in the supplementary materials, specifically, results on CIFAR10 (Appendix D.3),
ImageNet200 (Appendix D.4) are presented. Extensive ablation experiments with
the proposed CovariateFlow model are described in Appendix D.7.

6.5.3.A Evaluation Metrics & Models
To evaluate the model ability to detect OOD covariate shifts, commonly found
metrics from related work are utilized: the Area Under the Receiver Operating
Characteristic (AUROC) curve and the False Positive Rate (FPR) at a 95% True
Positive Rate (TPR). In all the experiments with CIFAR10(-C) and ImageNet200(-
C), we use the designated test set (10k samples) to compute each metric.

The contributions of this complete section include contextualizing the VAE,
AVAE, GLOW evaluated with log-likelihood and the DDPM with the reconstruc-
tion loss, within OOD covariate shift as baseline models. Furthermore, we eval-
uate GLOW using typicality and the proposed NSD metric and the Covariate-
Flow model with all the aforementioned metrics. Most models are trained from
scratch on the ID data. For the VAE-FRL [291], a method leading in semantic
OOD detection, the available pretrained CIFAR10 weights5 are utilized. A de-
tailed description of the implemented models can be found in Appendix D.1 of
the supplementary materials in this thesis.

6.5.3.B Covariate Shift in CIFAR10 and ImageNet200
Table 6.2 showcases various models and their averaged AUROC values across all
the degradations per CIFAR10-C/ImageNet-C severity level. While some models

5https://github.com/mu-cai/FRL
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excel in handling specific types of degradation, only the overall performance is
truly relevant, since it is difficult to predict the type of perturbation that will occur
in real-world settings. A detailed breakdown of the results per perturbation is
shown in Appendix D.3 of the supplementary materials.

In Table 6.2 it can be observed that models preserving the data dimension
and maintaining the high-frequency signal components, such as the DDPM and
NF-based approaches, perform best. ImageNet200-C contains fewer noise-based
degradations than CIFAR10-C. The NF models evaluated with LL generally per-
form well on noise perturbations (Table D.7 and Table D.15) and because of this
disparity in the types of degradations present in the datasets, the LL evaluation
exhibits a drop in average performance going from CIFAR10 to ImageNet200. The
VAE-FRL is designed to focus on semantic content and thus fails to accurately
detect a change in general image statistics. It can be observed that CovariateFlow
with NSD consistently outperforms the other methods at every severity level,
realizing an average improvement of 5.6% over GLOW on CIFAR10 and 7.8%
over GLOW on ImageNet200 when evaluated with the NSD metric. This shows
the strength of the proposed NSD metric, consistently improving over just LL or
Typicality on both the GLOW and CovariateFlow models. Figure 6.11 highlights
an example of how NSD consistently performs well under different degradations.

Appendix D.3 and Appendix D.4 present a comprehensive evaluation of vari-
ous methods for every type of OOD covariate shift between the CIFAR10(-C) and
ImageNet200(-C) datasets. Table D.1 focuses on the model performances across
three specific degradations (Gaussian Noise, Gaussian Blur, and Contrast) at five
severity levels, which summarize the general results seen across all degradations.
ImageNet200-C does not contain Gaussian Blur, but in general, the same trend can
be observed between the two datasets for all the employed models. A complete
comparison between all the models and their average performance per degrada-
tion type (averaged over severity levels) can be found in Appendix Table D.13.

To evaluate the impact of filter kernel size on performance, we have conducted
an experiment using CovariateFlow. Figure 6.12 illustrates the average AUROC
score achieved with varying Gaussian filter sizes employed when train the Co-
variateFlow model. The sigma values in the table indicate the size of the Gaussian
kernel used in this process. The results indicate that a smaller filter (Sigma=1)
yields the highest average performance. Example evaluations from the Covariate-
Flow model with NSD are presented in Figure 6.13. Notably, the evaluated scores
increase with each severity level, although the rate of increase is not linear or con-
sistently increasing between the different degradation types. The CovariateFlow
model is fully invertible and, as such, can generate heteroscedastic high-frequency
components. Figure D.11 in the Appendix depicts an example with sampled high-
frequency components, the reconstructed image and a comparison between the
reconstructed image and the original image.
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CIFAR10 ID Data CIFAR10-C Data Average
OOD Severity Levels AUROC↑

Models 1 2 3 4 5 /FPR95↓
Reconstruction

DDPM [269] 55.1 59.9 63.6 66.5 70.5 63.1 / 83.9
(T150: LPIPS)

DDPM [269] 58.2 63.8 69.0 71.0 75.6 67.5 / 75.2
(T20: LPIPS+MSE)

Explicit Density

Vanilla VAE [259] 48.3 47.8 48.8 50.3 49.5 48.9 / 83.3
AVAE [267] 53.6 58.0 60.2 63.9 65.2 60.2 / 73.1
VAE-FRL [291] 51.0 56.4 55.8 59.3 63.6 57.2 / 76.3
GLOW [206] (LL) 60.7 57.5 58.4 58.7 57.7 57.7 / 69.5
GLOW [258] (Typ.) 41.9 42.9 41.2 40.7 41.2 41.6 / 85.8
GLOW (NSD) 63.1 67.7 68.9 70.9 75.6 69.3 / 65.7
CovariateFlow (LL) 59.8 56.6 57.3 58.5 59.1 58.3 / 63.5
CovariateFlow (Typ.) 44.5 46.1 46.1 45.1 45.7 45.5 / 83.8
CovariateFlow (NSD) 65.9 72.9 75.5 78.6 81.7 74.9 / 61.7

ImageNet200 ID Data ImageNet200-C Data Average
OOD Severity Levels AUROC↑

Models 1 2 3 4 5 /FPR95↓
Reconstruction

DDPM [269] 48.6 56.9 65.1 69.7 74.0 62.9/75.8
(T20: LPIPS+MSE)

Explicit Density

Vanilla VAE [259] 31.5 36.1 40.2 42.6 45.7 39.3 / 92.9
AVAE [267] 34.7 37.9 40.8 42.3 44.9 40.1 / 92.7
GLOW [206] (LL) 35.2 38.4 37.0 35.8 34.7 36.2 / 81.7
GLOW [258] (Typ.) 50.7 48.8 49.9 51.7 53.8 51.0 / 79.8
GLOW (NSD) 52.3 61.6 66.4 69.8 72.4 64.5 / 65.6
CovariateFlow (LL) 18.7 23.7 27.7 28.6 29.0 25.5 / 86.9
CovariateFlow (Typ.) 65.6 64.1 60.9 61.4 62.0 61.8 / 73.1
CovariateFlow (NSD) 64.2 64.7 74.6 78.0 80.0 72.3 / 60.1

Table 6.2 Average AUROC scores of various methods on detecting the different severity levels of
OOD covariate shift with the CIFAR10(-C) and ImageNet200(-C) dataset.
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Figure 6.12 The average AUROC obtained with CovariateFlow model on ImageNet200 vs.
ImageNet200-C (all corruptions) at different filter sizes. The figure depicts the score obtained with
evaluating using log-likelihood, typicality and the proposed NSD.

6.5.4 Discussion on covariate shift in natural images
The findings from the analyses validate the hypothesis that OOD covariate shifts
can be effectively identified by explicitly modeling the conditional distribution
between low-frequency and high-frequency components. The proposed Covari-
ateFlow model is designed to specifically capture this distribution, thereby sur-
passes other methodologies in detecting covariate shifts in CIFAR10 and Ima-

Figure 6.13 Example CovariateFlow model (NSD) predictions for images from the ImageNet200
ID test set and corresponding covariate shifted images from ImageNet200-C. The severity level of
the covariate shift increases from left to right.
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geNet200. Given the diverse array of subjects and covariate conditions within the
corrupted datasets, focusing on this conditional distribution streamlines the task
of the model, allowing it to concentrate on the most relevant distribution for the
detection process.

Using the analysis in Table D.1 in Appendix D, the VAE-based models show
adequate performance in detecting noisy degradations, due to their inductive bias
towards modeling low-frequency image components. However, the model falls
short for this exact reason when exposed to any blurring or color degradations
in the images. The DDPM with the LPIPS+MSE metric, present strong perfor-
mance on noise and blurring-based covariate shift, but struggles when exposed
to color shift. This is likely due to color reconstructions happening earlier in the
reconstruction schedule. Consistent with existing literature [252], the NF-based
methods evaluated using LL are extremely sensitive to noisy degradations. How-
ever, any blurring or color shift is evaluated as being highly probable under the
modelled distribution, highlighting the bias of LL-based evaluation towards lower
textural content. Employing the newly proposed typicality metric shows the exact
opposite behaviour. Both GLOW and the proposed CovariateFlow, fail at detecting
noise-based covariate shift, but show remarkable improvements on both blurring
and color-based covariate shifts when evaluated with typicality. Combining typ-
icality and LL in the newly proposed NSD metric accentuates the strengths of
each, enabling strong detecting performance across most of the covariates with
CovariateFlow. NSD enhances the OOD detection capabilities of both the stan-
dard GLOW model and the proposed CovariateFlow, establishing it as a general
and robust metric for OOD detection in NF-based models. On the higher reso-
lution images from ImageNet200, the model also shows some effectiveness in
distinguishing JPEG compression as OOD, a difficult perturbation to detect.

When to use CovariateFlow: Despite GLOW evaluated with LL slightly superior
performance in general noise detection, the CovariateFlow model leveraging NSD
as metric, proves to be better overall. This provides a clear and general recommen-
dation for its applicability: LL is preferred in case strictly increasing noise-based
shifts are expected. Without a-priori knowledge on the OOD shift type (which
is usually the case), the CovariateFlow model with NSD is optimal. This work
demonstrates that it is possible to detect (even slight) perturbations in a target
domain without introducing biases or prior knowledge of these perturbations into
the model, unlike some contrastive learning approaches [292]. It only assumes
access to a sufficiently large dataset that captures the in-distribution covariate shifts
and aims to detect any covariate shift outside of this distribution.

6.5.5 Future work and limitations
Some concerns can be raised about the complexity of the typicality computation,
since test time inference requires a forward pass to compute the LL followed
by a backpropagation computation per sample. This increases the memory re-
quirements when deploying the model and decreases the overall inference speed.
However, in scenarios where accurate OOD covariate shift is essential, the Covari-
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ateFlow model provides the best accuracy vs. speed trade-offs (see Appendix D.3).
This work primarily focuses on detecting covariate shift, with explicit covari-

ate shifts introduced to assess performance. Many publicly available datasets
exhibit both semantic and potential covariate shifts. Although the proposed ap-
proach demonstrates effectiveness in CIFAR10 vs. SVHN (Table D.23), future
work should explore domain-specific datasets with limited ID covariate condi-
tions to test the sensitivity of the proposed approach. As depicted in Figure 6.13,
the scores acquired through evaluation with the CovariateFlow model and NSD
metric correctly increase with each severity level, however, not at the same rate
for each degradation type. Future work should explore the connection of OOD
scores with image-quality metrics [293] for a comparable ranking of image degra-
dations vs. quality. If this connection could be described, it would pave the way
for unsupervised image-quality assessment.

6.5.6 Additional case: Covariate shift in X-ray
The accurate and reliable detection of out-of-distribution (OOD) data is paramount
to diagnostic accuracy and the overall reliability of medical imaging systems, ulti-
mately ensuring patient safety while offering analysis of disease. Faulty systems
displaying incorrect imaging statistics can adversely affect clinical diagnostic
accuracy. Additionally, it is well established that modern deep learning-based
Computer-Aided Diagnosis and Computer-Aided Detection (CAD) systems are
vulnerable to distribution shifts, which can lead to erroneous predictions.

In a concluding experiment to the work in this chapter on covariate shift
detection, we apply the developed methods to the X-ray imaging case. By focusing
on detecting faulty systems through deviations in imaging statistics, we aim to
enhance the overall reliability of X-ray systems and automate various system tests.
This approach not only ensures the integrity of diagnostic results, but also helps
to maintain the consistency and quality of medical imaging over time.

6.5.6.A Additional experiment: X-ray dataset
Medical X-ray images, pivotal for diagnostic purposes, contain various noise
sources that can influence both image quality and diagnostic accuracy [294]. We
aim to develop a method to detect changes in the imaging system (faulty be-
haviour) that present themselves as OOD covariate shift in the images. Since
we do not have access to such artifacts, we capture real covariate shift in the data
through altering the imaging settings. If we can detect the subtle variations due to
the changes in imaging settings, we hypothesize that the proposed models will be
able to measure faulty OOD covariate shifts as an effect of system errors. To this
end, we have acquire a new dataset of X-ray images containing a standard test
object (clock) using an Azurion Image-Guided Therapy (IGT) system6. Images
are captured in Dicom format at 12 bits/pixel for different imaging settings, en-

6available from Philips Healthcare, Best, The Netherlands
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Figure 6.14 Image from the X-ray dataset depicting the standard clock test object.

compassing distinct dose levels using both pulsed fluoroscopy and full radiation
modes. In addition, these dose variations are operated at a varying source-image
distance (SID).

Figure D.9 in the supplementary material depicts images of the 6 modes that
are employed for evaluation: Mode 0 (exposure with a normal dose at 110-cm
SID), Mode 1 (exposure with a low dose at 110-cm SID), Mode 2 (exposure with
a normal dose at 90-cm SID), Mode 3 (exposure with a low dose at 90-cm SID),
Mode 4 (fluoroscopy with a normal dose at 110-cm SID), and Mode 5 (fluoroscopy
with a low dose at 90-cm SID). Assuming Mode 0 for obtaining ID data, it is
expected that there is progressive covariate shift from Mode 0 to Mode 5 in orders
of magnitude, where Mode 5 represents data being most OOD. The full dataset
consists of 18 Modes and 2 environments. For clarity, we focus on the selected few
modes presented only.

Since image resizing changes the noise distribution, we adopt a large-patch-
based approach (128×128-pixel patches with a 10% overlap) for dealing with
images of different sizes. Furthermore, the proposed models are prepared on
data from Mode 0 with approximately 100k image patches for training, 20k for
validation during training and set aside, another 20k patches for testing. For all
the other modes, we use the same number of patches for testing.

6.5.7 Results on covariate shift in X-ray images
The results in Table 6.3 showcase the performance of the generative OOD detec-
tion methods in the X-ray setting with varying acquisition parameters, which can
influence heteroscedastic noise in the signal. In contrast to the CIFAR10 bench-
mark datasets, covariate shifts in the X-ray setting are intractable and usually not
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X-Ray Mode 0 ID Data X-Ray Other OOD Modes Average
AUROC↑

Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 / FPR95↓
Reconstruction

DDPM [269] 86.4 88.5 84.2 89.3 96.5 89.0 / 69.4
(T250: LPIPS)

DDPM [269] 79.9 83.0 81.1 89.0 95.8 85.8 / 67.3
(T250: LPIPS+MSE)

Explicit Density

Vanilla VAE [259] 69.7 96.1 88.9 91.3 98.1 88.8 / 25.0
AVAE [267] 65.5 94.8 86.5 89.5 97.2 86.7 / 28.9
GLOW [206] (LL) 89.3 98.8 99.8 99.9 100.0 97.6 / 8.70
GLOW [258] (Typicality) 30.4 16.5 15.1 10.4 11.1 16.7 / 99.8
GLOW (NSD) 79.0 93.5 94.5 95.3 96.3 92.0 / 17.3
CovariateFlow (LL) 68.5 92.8 98.1 99.2 100.0 91.7 / 17.3
CovariateFlow (Typicality) 72.5 97.2 99.3 99.7 100.0 93.7 / 14.7
CovariateFlow (NSD) 70.0 96.5 99.4 99.7 100.0 93.1 / 15.6

Table 6.3 AUROC scores of various methods on detecting OOD covariate shift on the X-Ray
dataset.

visible to the non-specialist. Regardless, it can be observed that almost all methods
are still able to detect a shift in the high-level image statistics.

CovariateFlow exhibits robust performance in OOD covariate shift detection,
demonstrating the effectiveness in strictly modeling the high-frequency distri-
bution conditioned on low-frequency components. Considering that the X-ray
dataset is semantically less involved in nature than CIFAR10 and ImageNet-200,
accurate modeling should be relatively easier with high-parameter architectures
such as GLOW (44 million parameters versus 1 million for CovariateFlow, as
detailed in Table D.22 in the Appendix). This enables GLOW to capture the full-
image distribution, including accurate high-frequency statistics, and explains its
strong performance. Moreover, the covariate patterns observed are predominantly
high-frequency-based, which elucidates the preference for LL evaluation. How-
ever, while the CovariateFlow model performs adequately on detecting the shift
in noise through LL, it is also observed that the model accurately detects the sub-
tle variations in image contrast through typicality where similar evaluations with
GLOW failed. In light of these findings, LL and Typicality exhibit a bias towards
different covariates. As such, an argument in favor of a more general approach
can be made and thus consider evaluating the models with the proposed NSD.
When assessed with the comprehensive NSD metric, CovariateFlow excels (93.1%
vs. 92% with GLOW), offering an overall 1.1% performance enhancement over
GLOW, especially in scenarios of pronounced OOD shifts. Remarkably, this high
level of performance is achieved with a significantly smaller model size (approxi-
mately 1 million parameters), enhancing its efficiency and speed. These findings
underscore the robustness of the proposed method in identifying OOD samples,
particularly within the X-ray imaging contexts, and its elevated sensitivity to
variations in noise conditions.
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6.6 Conclusion
This chapter has explored two distinct approaches to OOD detection: seman-
tic OOD detection using wavelet-based NFs, and covariate shift detection using
the CovariateFlow model. Each experiment aims at different aspects of OOD de-
tection, with semantic methods focusing on class differentiation and covariate
methods addressing distribution shifts in imaging statistics. These methodolo-
gies offer robust frameworks to improve OOD detection across various domains,
including X-ray and natural imaging.

Firstly, for semantic OOD analysis, we have introduced a wavelet-based nor-
malizing flow (NF) approach for the semantic OOD detection of melanoma images.
By integrating wavelet transforms with NFs, domain-specific knowledge is lever-
aged to overcome the inductive biases of traditional NFs, which tend to prioritize
high-frequency features over semantic content. The proposed method demon-
strates large improvements in detecting malignant melanoma images within im-
balanced datasets, achieving a notable increase in the AUROC curve. This ad-
vancement not only aids in the early and accurate diagnosis of skin cancer, but has
also broader implications for other medical fields facing similar data-imbalance
challenges.

Secondly, we have addressed the less-explored area of covariate shift detec-
tion in images. To this end we have proposed the CovariateFlow model, a novel
methodology utilizing conditional Normalizing Flows (cNFs) to model high-
frequency image components, thereby effectively identifying sensory anomalies
and deviations in global signal statistics. The extensive analyses on datasets such
as CIFAR10 vs. CIFAR10-C (74.9% AUROC), ImageNet200 vs. ImageNet200-C
(72.2% AUROC) and a newly introduced X-ray dataset validated the effectiveness
of the CovariateFlow model in detecting covariate shifts. Our analysis reveals that
by meticulously modeling the conditional distribution between low-frequency
and high-frequency components, the CovariateFlow model outperforms existing
models, particularly when employing the Normalized Score Distance (NSD) met-
ric, which is a synthesis of log-likelihood and typicality evaluations. This work
not only highlights the critical importance of addressing covariate shifts for en-
hancing the fidelity of imaging systems, but also underscores the potential of
unsupervised generative models in improving the adaptability and robustness of
machine learning models in dynamic environments where distribution changes
are frequent.

In conclusion, these contributions illustrate the versatility and potential of
generative models in OOD detection. By addressing both semantic and covari-
ate shifts, the research provides a comprehensive framework for improving the
robustness of machine learning systems in diverse real-world applications and
thereby improving the reliability of imaging systems through detection of dis-
tribution shifts. The methodologies presented in this chapter not only advance
the field of OOD detection, but also pave the way for future research aimed at
further refining and expanding these techniques (e.g. extending OOD scores to
image-quality metrics).
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7.1 Introduction
Fluoroscopy-guided minimally invasive interventions have greatly improved pa-
tient outcome from trauma, orthopedic or cancer surgeries. These image-guided
surgeries largely rely on repeated acquisition of standard projections for instru-
ment guidance and monitoring. Instrument maneuvering is typically performed
manually by the clinician’s hand (through trial and error) and without additional
assistance, requiring multiple and extended sessions of fluoroscopy at the expense
of additional radiation to the patient. Procedures are complex and due to an of-
ten very limited spatial configuration, surgical results are error-prone and highly
surgeon-dependent.

Recently, various methods have been proposed to improve instrument posi-
tioning during interventional surgeries. Joint expertise in interventional radiology
and image guidance has expanded the treatment options for bone surgeries such
as pedicle screws placement in the thoracic and lumbosacral spine [295]. State-of-
the-art (SOTA) practice for pedicle screw placement employs an intraoperative
cone-beam computed tomography (CBCT) scan and combines it with an external
navigation system. The intraoperative 3D augmented reality surgical naviga-
tion (ARSN) system uses external optical video cameras to augment the surgical
field and assist the clinician in the navigation path for screw placement. Screw
placement is then confirmed with an additional postoperative CT scan [296], [297]
and manual validation. In line with previous approaches in this field [298], this
comes at the expense of extensive external equipment and alters the clinical way of
working, which inhibits adoption. Although these methods demonstrate progress
in screw placement by indicating a path, they do not provide any guidance or
validation through actual screw tracking.

Providing surgical guidance by extracting semantic information from the X-ray
images alone is extremely appealing with benefits for several applications. Cardiac
interventions have utilized this and improved the visualization of both catheter-
based devices and soft-tissue anatomy by co-registering X-ray fluoroscopy (XRF)
images with echocardiography through Transesophageal echocardiography (TEE)
probe pose estimation from the X-ray image alone [299]. Screw placement surgery
is another example of a complex procedure that can greatly benefit from extracting
visual information available in the X-ray image for surgical assistance. Through
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pose estimation via accurate 6 Degrees of Freedom (DoF) of the surgical instru-
ments from a single X-ray image, additional guidance to clinicians is provided
during image-guided procedures and instrument placement is determined with-
out the need for additional external navigation systems or postoperative CT scans.

Motivated by the need for automated robot operation, autonomous driving
and VR & AR applications, methods for accurate 6-DoF pose estimation of rigid
objects have extensively been studied [300]. While most existing methods assume
a fixed image acquisition geometry, which is sufficient for many applications,
some domains, such as X-ray imaging or space satellite pose estimation, require
the imaging geometry to constantly change during its operation. Adjustment of
the focal length (zooming) or the detector field of view (X-ray image size and dose
control) are common changes in such a framework. Naturally, it is also evident
that pose estimation methods should include the intrinsic camera parameters if
the methods will be used across different cameras, otherwise the designer faces
manual adjustment for each camera (re-training and data collection in case of
learning-based methods).

Therefore, in these domains it is crucial for pose estimation methods to in-
corporate the changing imaging geometry to accurately recover the pose of the
target object(s). Perspective-n-Point (PnP) deep learning-based methods, which
use the intrinsic camera parameters to estimate the object’s 6-DoF pose, could be
readily applied to these domains. However, the accuracy of these approaches, as
originally proposed by Tekin et al. [301], is limited by the YOLOv2 architecture’s
inability to accurately regress 2D image locations of the projected vertices of the
object’s 3D bounding box. Other two-staged methods such as EPro-PnP [302], em-
ploy an initial object detection method followed the final object pose estimation,
making them computationally less efficient. Recent advancements in the YOLO
object detection series suggest that 6-DoF pose estimation can benefit from these
improvements to efficiently achieve high pose accuracy under variable acquisi-
tion geometry. The above discussion and highlighted limitations culminate in the
following research questions.

• Acquiring accurate instrument pose data in X-ray settings is challenging,
with prior methods often relying on simulations. How can a general-purpose
method be established to accurately and efficiently acquire data for 6-DoF pose
estimation in X-ray imaging?

• Existing 6-DoF pose estimation methods are often too slow or inaccurate
for precise guidance in the medical domain. What advancements can be made
to develop a general-purpose method that is both accurate and fast for 6-DoF pose
estimation?

• Medical procedures in the image-guided therapy setting require real-time
adjustment of image acquisition parameters, presenting a challenge for 6-
DoF pose estimation methods. How can X-ray imaging geometry be effectively
incorporated into the 6-DoF pose estimation process, and what impact does this
have on the accuracy and performance of the model?
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As a solution direction, the object pose is acquired through predicting 2D
keypoints for the instrument’s virtual 3D bounding box and resolving the pose
through a Perspective-n-Point (PnP) algorithm [80] under consideration of the
acquisition geometry. This attribute enables the transition to the X-ray domain,
where the acquisition geometry is constantly changing during a procedure and
across systems. Additionally, we address generalization from our training domain
to a clinically relevant setting through a series of extensive data augmentations.
The proposed method shows robustness and high accuracy for 6-DoF pose esti-
mation of a surgical screw in a variable intraoperative setting.

In this work, we propose a (medical) instrument pose-estimation method that
is general-purpose and is addressing technical challenges that have limited such
technology from being incorporated in practice. We further extend our prior
work [61] and introduce a novel YOLOv5-6D pose modeling architecture for
more accurate and fast object 6-DoF pose estimation. In addition, to address the
difficulty in acquiring data, a data collection method is introduced for automatic
data labeling that generalizes across all cone-beam X-ray geometries and object
types.

This chapter is organized as follows. Section 7.2 discusses the related work
on object 6-DoF pose estimation for both the color and X-ray domain. Section 7.3
introduces the proposed approach to X-ray-based object pose estimation. The
results of these experiments are presented in Section 7.4. Finally, a discussion on
the obtained results and possible future directions are included in Section 7.5 and
7.6.

7.2 Related work
Recent advancements in deep learning have improved the accuracy at which sys-
tems can estimate the position (3-DoF) and orientation (3-DoF) of rigid objects.
This progress is largely driven by applications for the metaverse, VR & AR, robot
operation and intelligent driving. Zhu et al. [300] provide an extensive review of
methods for 6-DoF pose estimation. Extending this review, we briefly consider
related work in object pose estimation in the RGB and X-ray domain. We omit a
detailed discussion of methods dependent on depth information (RGB-D), such
as RCVPose [303] and PVN3D [304], as well as RGB-D-based, model-free meth-
ods like FS6D [305] and the more recent FoundationPose [306], since this depth
modality is unavailable in our X-ray setting.

7.2.1 6-DoF pose estimation in RGB
The majority of research efforts in object 6-DoF pose estimation determine the
object pose from RGB images with knowledge of the object of interest. These
methods commonly utilize the object 3D models followed by task-specific model
training. More recently there has also been growing interest in generalizable
model-free methods (hereafter refereed to as model-free methods), that do not
require additional training to predict the pose of novel 3D objects [307]–[309].
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While this does alleviate large constraints on employing the method, they do still
fall behind in terms of both speed and accuracy (Table 7.8). In many applications,
with the object 3D model often obtainable, accuracy and speed is required over
ease of implementation.

The state-of-the-art methods employing object-specific knowledge during
training can roughly be categorized as methods that (1) directly regress object
pose from the color image (referred to as direct methods), (2) employ a PnP algo-
rithm to compute the object pose from 2D predicted keypoints of a corresponding
3D model (referred to as PnP methods) and (3) either (1) or (2) followed by an
iterative refinement procedure.

Direct pose estimation involves directly regressing the object pose with, typ-
ically, a deep convolutional neural network (CNN) from the RGB image in an
end-to-end fashion. Bukschat et al. proposed EfficientPose [310] that employs the
EfficientNet [311] backbone and a BiFPN-net [312], to regress the object pose from
RGB images at different scales. EfficientPose regresses the pose of single objects
from RGB images in the LINEMOD benchmark at 36.43 ms/image (27.45 Frames
Per Second (FPS)) and an average 97.35% ADD(-S) accuracy at 0.1·d1. Methods in
this category do not explicitly consider the camera acquisition geometry and these
parameters are thus considered static and fixed per camera/model pair. Recently,
Xu et al. have developed RNNPose [313] that starts with an initial pose from any
method (tested with a direct [314] and PnP method [315]) and iteratively refines
the object pose, based on the estimated correspondence field between the reference
(2D render of 3D model) and target images. This iterative re-projection strategy
considers the intrinsic camera parameters, but comes at the cost of increased com-
putation time. This method currently achieves the highest accuracy on the public
LINEMOD benchmark at 97.37% ADD(-S), but with an inference time (4 render-
ing cycles and 4 recurrent iterations each as per the paper) of 308.35 ms/image
(3.24 FPS), excluding the initial pose prediction step.

Tekin et al. have proposed a 2D-3D correspondence-based method (SingleShot-
Pose [301] also known as YOLO-6D in Figure A.1 in Appendix A) for 6-DoF pose
estimation. The model simultaneously performs a single-shot object detection
and the 6D pose prediction from an RGB image. This is realized by predicting
the 2D image locations of the projected vertices of the object’s 3D bounding box.
Using a Perspective-n-Point (PnP) algorithm and known acquisition parameters,
the 6D pose of an object can be estimated (we mention the relationship here, but
will discuss it in detail in Section 7.3). As a feature extraction network, the model
is using the Darknet19-448 backbone, first proposed in YOLOv2 [316] for object
detection. Since its release, there have been considerable improvements in YOLO
object detection series [317]–[320]. We leverage these advances in the development
of the YOLOv5-6D pose estimation model.

1This accuracy is related to 10% of the object diameter d. Later in this chapter, we provide a detailed
explanation and more versions of the metric. If the distance is not specified, it is assumed to be 10%.
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Prior to our work, other PnP-based 6-DoF pose estimation methods have been
developed [301], [315], with the best-performing method being EPro-PnP [302],
proposed by Chen et al.. This two-stage approach achieves a high 96.36% ADD(-S)
accuracy, enabled by the dense correspondences extracted form the object image
crop and the proposed differentiable PnP layer. The pose estimation step is also
computationally efficient (see Section 7.4.2). While the pose estimation step and the
PnP layer can be integrated with any architecture, their work employs CDPN [321],
a dense correspondence network for 6-DoF pose estimation from object-specific
image crops. An initial method is thus required for object detection and cropping
on the target images which typically consumes majority of the compute budget.
Section 7.4.2 provides an in-depth run-time analysis of these methods.

7.2.2 Object pose estimation in X-ray
Methods for 6-DoF pose estimation in the X-ray domain have been proposed for
applications ranging from industrial product inspection, C-arm repositioning for
surgical assistance, to surgical tool pose estimation. Presenti et al. propose a series
of methods [322]–[324] to recover manufactured object pose from X-ray images
for defect inspection. Their approach assumes fixed acquisition geometry and
displays sub-optimal results when only one image is used [324], compared to
methods employing PnP. Similarly, X-Ray-PoseNet [325] has been proposed by
Bui et al. to directly regress the the translation (3 degrees) and rotation (4 quater-
nions) of industrial objects with respect to the X-ray system. Their approach is
based on a custom CNN architecture and assumes fixed X-ray acquisition geome-
try, while being trained on simulated X-ray images. Kausch et al. [326] developed
a C-arm re-positioning pipeline to suggest C-arm imaging angles for assistance
during spinal implant placement. It uses the patient spine as reference and sug-
gests a new C-arm position through a series of features extracted from the X-ray
image, using multiple U-Net-like models.

Despite the interest in surgical tool guidance, few attempts have been made to
directly recover the pose of the instrument used during the treatment. Registration
between X-ray fluoroscopy (XRF) and transesophageal echocardiography (TEE)
for structural heart interventions relies on accurate pose-estimation of the TEE
probe. TEE-probe pose estimation through 2D/3D registration methods based on
iterative refinement such as Direct Splat Correlation (DSC) and Patch Gradient
Correlation (PCG) have been implemented[299]. In contrast, instrument pose
estimation from 3D ultrasound data volumes has received substantially more
attention [327], [328].

In one particular case, Kügler et al. developed i3PosNet [329], a method for sur-
gical instruments pose estimation using a VGG [330]-based CNN architecture. The
network predicts object-specific keypoints from localized patches. While consider-
ing the geometric landmarks of fiducials (virtual keypoints) during pose estima-
tion, the method does not account for the image acquisition geometry, limiting its
application across different systems and geometries. i3PosNet is designed for pose
estimation of symmetrical objects and lacks effectiveness for asymmetrical instru-
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ments, as it only estimates a 5-DoF pose. This method is developed and trained
on simulated data and finally tested on manually annotated real X-ray images,
which introduces a time-consuming setup and potential human errors. Finally,
the multi-stage approach employed, including image variety reduction, image
information extraction followed by pose reconstruction from pseudo-landmarks,
hinders its real-time applicability.

7.2.3 Approaches for 6-DoF pose estimation data acquisition
The LINEMOD dataset [331] is the most commonly used dataset for 6-DoF object
pose estimation in the RGB(-D) domain. Images of the 15 objects are collected in
sequence under different illumination and large viewpoint changes in a heavily
cluttered environment with mild occlusions. The ground-truth poses (labels) are
obtained using calibrated cameras and a calibration pattern.

Unfortunately, labeled intraoperative X-ray training data for object 6-DoF pose
estimation has neither been described nor published. All of the above-mentioned
methods rely on simulated training data that require highly accurate simulations
and extensive CAD modeling. The methods then train on these simulations, aim-
ing to generalize to the test domain. This domain gap introduces a challenge when
transferring to real-world applications. Kügler et al. [329] acquire real data of ob-
ject poses through tedious manual annotation effort, which involves projecting
their object as an outline on the X-ray image and then interactively translating and
rotating the object to match the X-ray image. The applied data in their approach
are also captured using fixed X-ray acquisition geometry.

Summarizing the outcome of this detailed review, we position the proposed
work as a general-purpose 2D/3D correspondence method for instrument pose
estimation from a single X-ray image. Building on our prior work [61], the method
takes the X-ray acquisition geometry into account, enabling it to generalize to
new systems. This generalization will be discussed in Section 7.3.1. To address
the difficulty in data acquisition, we present a general method for capturing real
X-ray data of any object.

7.3 Approach
7.3.1 X-ray pose estimation
X-ray imaging systems are available in a range of different sizes with varying
detector shapes, depending on the needs of the application. In addition, modern
X-ray systems allow for the acquisition geometry to change at run-time to improve
image quality of the area of interest. In brief, this results in varying acquisition
parameters such as the detector size, detector field of view (FOV) and most com-
monly, the source-image distance (SID). All of these variables have a direct effect
on the resulting X-ray image. Computer-aided image-guided methods influenced
by these changes need to request fixed acquisition parameters, or incorporate their
variation in order to present accurate results. While several methods requesting
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Figure 7.1 X-ray projection model depicting the X-ray source, a surgical screw, detector with an
attached grayscale optical camera, the detector panel and the captured X-ray image. The frame of
reference for each point of interest is also depicted.

fixed acquisition geometry have been adopted, they have limited applicability or
require extensive additional preparation effort for each new system. Object pose
estimation is fundamentally connected to the image acquisition parameters and,
as such, we incorporate them in the proposed method to allow a single trained
model to generalize to a wide range of acquisition geometries.

7.3.2 Data acquisition setup
Acquiring labeled data for 6-DoF pose estimation tasks is difficult, due to the
inherent limitation of human observers to accurately determine an object’s 6-DoF
pose. When possible, manual labeling, even in the case of projected keypoints,
is prone to errors and extremely laborious. Therefore, we draw inspiration from
data collection methods in the optical domain [331], [332] and devise a setup for
accurate and automatic data acquisition and labeling for 6-DoF pose estimation
in X-ray without corrupting (or introducing a learnable bias to) the X-ray image
with external markers.

In our data acquisition setup, we attach an external optical camera to the X-ray
detector. The optical cues from the camera that are transparent to the X-ray, can
be utilized to assist in the pose estimation task. The complete method consists of
(1) a ChArUco board [333] with (2) the object of interest at a known location on the
board, (3) the optical camera capturing images of the board, whilst (4) the X-ray
system captures X-ray images of the object. The 2D projection of the object’s 3D
bounding box onto the X-ray detector can then be acquired through the optical
pose estimation of the ChArUco board and a series of frame transformations to
the X-ray source coordinate system.

The proposed concept allows for fully automated data acquisition through
automated movement of the X-ray C-arm and patient table to a diverse set of
positions. In contrast to previous work, the method does not rely on accurate
rotation or translation sensors from the X-ray system, so that it can be used across
a wider range of X-ray systems and still recover accurate data labels. In addition,
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the labeled images are void of any external cues that can be utilized to determine
the object pose.

In this work, we employ OpenCV [334] for acquiring the pose of the board in
the optical camera frame. This is achieved through the detection of the ChArUco
markers in the optical image and combined with the knowledge of their physical
flat-panel location on the printed ChArUco board on the patient table. Provided
with the set of 2D-3D correspondences, the camera pose in the table coordinate
system can be obtained by solving the PnP problem.

7.3.3 X-ray acquisition model & calibration
This research adopts the pinhole X-ray acquisition model to traverse between the
3D object frame and the 2D X-ray projection. The model is used during data ac-
quisition and for the PnP pose calculation. Figure 7.1 depicts the X-ray acquisition
model and Equation (7.1) formalizes it. The pinhole camera model is formally
specified by

λ

uv
1

 =
[
K O3

] [ R C

OT
3 1

]
XW

YW
ZW
1

 , (7.1)

where the intrinsic parameter matrix K is defined as

K =

kuf 0 kux0

0 −kvf kvy0
0 0 1

 . (7.2)

In the above expressions, matrix K represents the intrinsic system parameters,
which can change during the clinical operation and across different systems. These
intrinsic parameters consist of the horizontal (ku) and vertical (kv) density of
pixels. The pixel density can change depending on the detector and image size
combination, e.g. changing the field of view or zooming on an image. The offset
of the principal point to the detector center is described by coordinates (x0, y0).
The source-image distance (SID), or focal length, is represented by parameter f .
The extrinsic parameters R and C are the rotation and translation matrices to be
solved.

The intrinsic parameters of the optical cameras are calibrated using a flat plate
with a pattern of circles. Optical images of the plate are captured from different
angles and the camera parameters are adjusted by minimizing the reprojection
error of the circles. The resulting optical coordinate system is subsequently linked
by capturing both optical and X-ray images of a dome-shaped calibration object,
consisting of white plastic cylinders embedded in black foam. On the optical
images, only the circular sides of the cylinders are visible, of which the center is
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(a) Grayscale image of the ChArUco board and test cube on the patient table taken from the optical
camera on the detector. The 2D projection of 3D cube outline can be seen in blue.

(b) Dicom cube image (c) Projected 3D bounding box

Figure 7.2 (a) Grayscale image showcasing the setup used to automatically acquire the 6-DoF pose
of various objects. (b) Corresponding X-ray Dicom image of the cube. (c) Projected 3D bounding
box and virtual corner coordinates.
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(a) Zoomed X-ray image of the surgical screw
used for training and validation.

(b) X-ray image of the surgical screw with spine
phantom used as test set.

Figure 7.3 Examples from the applied screw train, validation and test datasets. Each image also
showcases the projected 3D bounding box of the screw.

computed. The X-ray images are used to create a 3D reconstruction, on which the
cylinders are segmented and the same points are computed, as observed in the
optical images. The two point clouds are matched, thereby linking the optical and
X-ray coordinate systems.

7.3.4 Datasets
7.3.4.A LINEMOD
In line with previous work on 6-DoF pose estimation, we also evaluate the pro-
posed YOLOv5-6D architecture on the popular LINEMOD dataset. The dataset
consists of 13 different objects, each with approximately 1,200 images that are
placed in various scenes. In this benchmark there is a predefined division scheme
for training and test images which we also adopt. The training set varies between
15-30% of the object’s dataset, making it a very small fraction of the dataset. This
aspect makes it particularly interesting and relevant for the medical domain, in
the sense that approaches for this benchmark need to learn and generalize from
scarce data.

7.3.4.B Cube
Using our data collection method described in Section 7.3.2, we have composed
a dataset, henceforth referred to as the cube dataset, to test the adaptation of the
proposed approach and the YOLOv5-6D network to the X-ray domain. Figure 7.2a
depicts the grayscale image of the 30×30×30-mm perspex cube, embedded with
metal markers placed on the ChArUco board. Since the 3D bounding box ex-
actly matches that of the cube’s physical dimensions, the cube is the ideal test
object because one can visually determine the accuracy of the bounding box fit,
whereas other objects might have a virtual 3D bounding box. Figures 7.2b and
7.2c depict the X-ray image of the cube and the corresponding 2D projection of
the 3D bounding box. Along with the DICOM X-ray image and the 2D projected
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coordinates, we also capture the original 6-DoF cube pose and a binary mask
of the cube in the X-ray image for training purposes. Table 7.1 lists the X-ray
system’s acquisition parameters and geometry used to capture the Cube dataset,
which is repeated for every side of the cube. In line with prior work [335], X-
ray/optical image pairs are taken in 10-degree intervals across the geometrical
rotation range of the X-ray system, to ensure a uniform viewing distribution of
the object. The SID, translation and FOV parameters are uniformly sampled from
the allowed range and automatic gain control manages the applied X-ray dose
at a constant K rate of 1.88 mGy/min. In total, we have acquired 1000 images
(rx ∈ [−45◦,−35◦,−25◦, ...,+45◦] with ry and rz being in the same range) per
cube side at a 960×742 image resolution.

Table 7.1 C-arm acquisition and table parameters (w.r.t. its starting position) used during the data
collection.

Rotation (degrees ◦) Translation (mm)

rz ∈ [−45◦, 45◦] tz = 700± 40

ry ∈ [−45◦, 45◦] ty = 0± 40

rx ∈ [−45◦, 45◦] tx = 0± 40

SID (mm) FOV (mm) diagonal

[950.0, 1230.0] [156, 484]

7.3.4.C Screws
To demonstrate its clinical potential, we also evaluate the proposed approach for
6-DoF pose estimation of surgical screws for potential spine surgeries. The screw
is a standard 3.5-mm cannulated cancellous screw, often used during orthopedic
surgeries. The screw is 34.3 mm long and has a head with a diameter of 6.88 mm.
We have created a 3D model of the screw to be used during the projection onto
the grayscale and X-ray image. The screw is inserted into a polystyrene block to
enable precise placement on the ChArUco board. The same data collection method
as described in Section 7.3.2 has been followed to construct the so-called Screw
dataset (Figure 7.3a) for training and validation of the work. In addition to this
dataset, we have also constructed a Screw test dataset. The Screw test dataset is set
up to test the generalization of the proposed approach to a more realistic setting.
We have attached the surgical screws to the spine of a human phantom, similar
to their usage during a spine surgery. An example image of the screw and spine
phantom can be seen in Figure 7.3b. While this setting is still different from an ac-
tual clinical intervention, it does enable to determine whether the pose estimation
method can generalize to a more complex domain. The Screw dataset and screw
with human phantom dataset each contain 1000 images, acquired following the
parameters listed in Table 7.1 and as further specified in Section 7.3.9.
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7.3.5 YOLOv5-6D Pose
This research largely draws inspiration from the YOLO6D model [301] for object
pose estimation and enhances it by incorporating recent advancements in the
YOLO object detection series [320]. As such, this single-shot approach enables
simultaneous detection and 6-DoF pose estimation of objects in RGB and X-ray
images. The model predicts the 2D image locations of the projected vertices of
the 3D bounding box of the object. Using these 2D/3D correspondences and the
current acquisition parameters, the 6D pose of the object is then solved using
a PnP algorithm [80], in our case specifically ePnP [336]. Figure 7.4 depicts the
YOLOv5-6D model architecture. The model follows a standard backbone, neck
and head architecture. The backbone is based on the CSP-Net [337], first proposed
in the work by Wang et al. for improved object detection. For the model neck, the
BiFPN [312] introduces a top-down pathway to fuse multi-scale features with
an additional bottom-up pathway. The complete architecture, as depicted in Fig-
ure 7.4, can be subdivided into different building blocks at a level of processing
stages, indicated by different colors. These stages consist of (1) ConvBNSilU - con-
volution, batch normalization, Silu activation, (2) BottleNeck 1 - Two ConvBNSilU
operations followed by a residual connection to the input, (3) BottleNeck 2 - Two
ConvBNSilU operations, (4) C3 - ConvBNSilUs and a BottleNeck block (BT1 or
BT2) (5) SPFF - represents a pyramid structure through max-pooling operations,
and (6) Conv - convolution.

We adjust the model head for keypoint prediction at different scales (three
in our experiments). More precisely, three scales produce W ×H grid cells and
na anchor boxes (also three in our experiments) responsible for detecting the
objects. Given the LINEMOD input images of size 640×480 pixels, the network
produces 18,900 predictions (80×60×3 + 40×30×3 + 20×15×3). Every cell and
anchor-box combination predicts output tensor To, which is the 2D location of the
object center and 8 corners of the projected 3D bounding boxes in the image. More
formally, To = (bx0, by0), 8 × (bx, by), conf, nclass, where (bx0, by0) are the object
center coordinates, (bx, by), the projected 3D bounding-box coordinates, conf the
cell confidence of it containing the object and nclass, the class-specific confidence.
Hence, the model output comprises 19 predicted values, as we only capture one
class. Additionally, we apply a scaled sigmoid function specified by

f(·) = (2(σ(·))− 0.5) + coffset), (7.3)

to the object-center coordinates prediction for easier predictions when the object
center is close to the edge of a grid cell compared to the original single sigmoid
function. Finally, the prediction with the highest cell-specific object confidence is
chosen for evaluation. In Equation (7.3), σ is the sigmoid activation function and
coffset is the offset to the top-left corner of the particular grid cell.

In contrast to YOLO6D, our model incorporates a more advanced feature
extraction backbone, utilizing CSP-Net over Darknet 19-448, and integrates an
additional ’neck’ network, BiFPN. This enhancement enables the feature extrac-
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tion across multiple scales, as opposed to YOLO6D’s single-scale approach. The
features from these different scales are rasterized into the 18,900 cell predictions,
compared to 845 cells in YOLO6D. This enables the network to make accurate
predictions for much smaller and larger objects. These architectural improvements
along with further refinements of the training objective leads to a significant accu-
racy increase at the cost of a minor speed decrease, as shown in Table 7.8.

7.3.6 Training objective at different scales
We introduce various technical improvements to enable efficient model training
with the new architecture. The confidence function proposed by Tekin et al. [301]
is adjusted to support the multi-scale model and variable input image dimensions.
Most notably, we change the distance threshold used in the confidence function in
Equation (7.4), based on the output layer grid size instead of a fixed 2D Euclidean
distance. The confidence function, c(x,W,H), dynamically determines a grid cell’s
object confidence value for the current predicted 2D points (x) based on its distance
DT (x) from the target 2D points. Since the grid-space size changes at different
output layers determined by the image resolution and aspect ratio, the confidence
function is adjusted accordingly. This function can be formalized by

c(x,W,H) =

{
e
α(1− D(x)

dT (W,H) ), if D(x) < dT (W,H)

0, otherwise,
(7.4)

where dT (W,H) = β
√
W 2 +H2, the diagonal of the grid and β a hyperparameter

set to an empirically determined value of 0.2. The sharpness of the exponential
function is determined by the hyperparameter α and D(x) is the L1 distance be-
tween the predicted point and the ground-truth point in grid-space coordinates.
The complete loss function consists of L = λpointsLpoints + λconfLconf, where λpoints

and λconf are scaling hyperparameters to control the influence of the loss between
points and the confidence loss, respectively.

The process of target (object) prediction in the proposed model involves a
critical step of matching each target with the most suitable anchor, ensuring a close
match between the widths of the target (determined by object-specific keypoints
that are farthest apart –after augmentation– in the vertical and horizontal direction)
and the anchor to determine the optimal scale for prediction. Following this, the
model identifies the specific grid cell responsible for the prediction, based on the
target location. The primary cell for prediction is the one containing the target
center point, but adjacent cells may also participate, depending on the target
position within the cell. During training, grid cells are trained to predict targets
in various positions. This process equips each grid cell with the ability to make
accurate predictions for a range of target positions, thereby ensuring robustness
and versatility in detecting different types of targets across various locations.
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7.3.7 Data augmentation and training details
A small dataset of the object of interest is collected and through extensive data
augmentation, we establish the YOLOv5-6D model for 6-DoF pose estimation to
generalize the model to a new, unseen and more complex domain. A series of
data augmentation techniques are employed and refined for accurate keypoint
detection in both the RGB and X-ray domain. For the X-ray data loading, all
data is processed as a one-channel image, compared to the normal three-channel
RGB domain. The proposed augmentation process consists of: (1) replacing the
image background with a random image from the PASCAL VOC dataset [338]
using the object mask, (2) color-space HSV augmentation and contrast, brightness
and noise adjustment for the grayscale images, (3) scaling (30%), zooming (±
30%), translation (30%), rotation (±180◦), sheering augmentation (2◦) and finally,
(4) an image overlay and occlusion strategy to randomly occlude (RGB images),
or reduce the intensity (X-ray domain) of an area about or on top of the object of
interest (X-ray “occlusion”). Many of the occlusion augmentations are adapted
from the work by Sárándi et al. [339]. Figure 7.5 depicts this augmentation applied
to an image from the cube dataset. The Cube and Screw datasets are randomly
split into 70%/30% train/validation splits. YOLOv5-6D is branched from the

(a) X-ray cube image before any augmentation is
applied.

(b) The same image after augmentation.

Figure 7.5 Example image from the applied cube datasets from before and after augmentation for
training. Notably, a bicycle partially “occludes” the cube in the center of the augmented image, the
background is changed and the image is scaled.

YOLOv5 repository [320] and adjusted for 6-DoF pose estimation, instead of object
detection. We exploit many of the training techniques in line with those used in
object detection. The model is trained with an ADAM optimizer with a warm-
up and cosine learning-rate scheduler. An L1 loss is employed for keypoints
and a Cross-Entropy loss for the objectiveness confidence. Model weights are
initialized with the COCO-pretrained weights [320], [340] where possible. The
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above implementation is in PyTorch 1.7.0 and is shared for reproducibility 2. The
models are trained on two RTX 3090Ti GPUs and all of the performance tests are
carried out on a system with a more readily available RTX 2080Ti and an i9-9900KF
CPU, operating at 3.60 GHz for comparison.

7.3.8 Evaluation criteria
We adopt the evaluation metrics from prior work on 6-DoF pose estimation. The
commonly used 3D distance of model vertices are employed, often referred to
as the average distance difference (ADD) and ADD-S (symmetric objects) met-
ric [335], [341], [342], as the main method of evaluation, while also providing
further insight into model performance through the 2D reprojection error, average
angle error and the translation error. The ADD metric can be equated as

ADD =
1

|M|
∑
x∈M

∥(Rx+ t)− (R̄x+ t̄)∥2, (7.5)

and computes the average 3D distances between a set M of 3D points (the 3D
model vertices) brought about the ground-truth rotation (R) and translation (t)
and the predicted rotation (R̄) and predicted translation (t̄). Averaging is done
over the cardinality of M. For symmetrical objects, we use the ADD-S metric
defined as

ADD-S =
1

|M|
∑
x1∈M

min
x2∈M

∥(Rx1 + t)− (R̄x2 + t̄)∥2, (7.6)

capturing the smallest distance of the possible 3D distances. The 3D distance is
converted into a binary metric, based on a maximum object diameter threshold of
10%, 5% and 2%. In Section 7.4.2, we also extensively measure and report model
inference time.

7.3.9 Clinical context
During X-ray acquisition, attenuations along the beam direction are accumulated
and depth information is lost, potentially yielding ambiguous overlays of struc-
tures depending on the viewing direction. This is especially important when
attempting to recover the pose of an instrument of interest. Consequently, we
consider the deployment conditions and working positions of the X-ray system
to determine if viewing angles can be constrained to avoid ambiguities, or if the
ambiguous images even have an impact on the object pose whatsoever (as is the
case with symmetrical objects). With our application of spinal screw-placement
surgeries in mind, the patient is typically in a prone position with the clinician
performing the spinal surgery with a superior approach (from above the patient).
Any screws being placed will be attached with the screw head upwards. This

2Code publicly available at: https://github.com/cviviers/YOLOv5-6D-Pose
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Figure 7.6 Typical C-arm working positions during spinal screw-placement surgeries [296].

natural working condition can be exploited and ambiguities are directly avoided
by limiting the viewing angles of the screw to be from above the patient as in Fig-
ure 7.6. Although the rotational symmetry around the screw z-axis still remains,
the physician will always check initial mounting to the correct vertebrae and will
be concerned only about 5 degrees of freedom, explicitly the translation in x, y, z

directions (connecting point to the bone) and the orientation about the x-axis and
the y-axis (tilting angles), because no z-rotation is used. Computer-aided pose
estimation methods can in turn also be conditioned to these viewing angles, by
strictly acquiring training data from the expected working positions. We employ
this conditioning in the Screw datasets by only using images captured with a
rotation in range of rx ∈ [−45◦,+45◦], ry ∈ [−45◦,+45◦], rz ∈ [−180◦,+180◦]

from the starting position of the X-ray system. Finally, in practice, a projection
of the object 3D model will be rendered instead of the bounding box along with
strictly relevant transformation axes to further reduce ambiguities and present
clinically-relevant information.

7.4 Results
This section presents the results of the proposed approach on the various datasets
used during the development of a method for accurate 6-DoF pose estimation in
X-ray.

7.4.1 Object pose estimation in RGB images
The quantitative results of the accuracy of the experiments on the LINEMOD
dataset are presented in Table 7.3 and Table 7.2, while the qualitative results are
shown in Figure 7.7. We compare the proposed approach against seven compet-
itive object pose estimation methods on the LINEMOD dataset: YOLO6D [301],
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Figure 7.7 (a) Example predictions of different objects for qualitative evaluation of the proposed
YOLOv5-6D model on the LINEMOD test dataset. Green 3D bounding boxes visualize ground-
truth poses while the estimated poses are highlighted by blue boxes. The objectiveness, 2D reprojection
error and 3D vertices distance are depicted in the green floating annotated text.
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Figure 7.7 (b) Example predictions of different objects for qualitative evaluation of the proposed
YOLOv5-6D model on the LINEMOD test dataset. Green 3D bounding boxes visualize ground-
truth poses while the estimated poses are highlighted by blue boxes. The objectiveness, 2D reprojection
error and 3D vertices distance are depicted in the green floating annotated text.
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PoseCNN [314], PVNet [315], Gen6D [307], EfficientPose [343], RNNPose [313]
and EPro-PnPv2 [302]. The accuracies reported in the respective papers are used
for comparison. In addition, Table 7.2 and Table 7.6 categorize the methods as
described in Section 7.2 and based on our findings. Table 7.2 indicates the type of
network employed during the 1st Stage of the multi-stage methods and the Type
of approach (direct or PnP) utilized for obtaining the object pose.

As can be observed from Table 7.3, YOLOv5-6D realizes an average increase
of 9.07% on the 2D reprojection performance metric over the YOLO6D model.
On the ADD(-S) metric (Table 7.2), YOLOv5-6D shows a strong performance
increase (40.98%) over its predecessor and realizes competitive results against
SOTA alternative methods, while being much faster (see Table 7.8). Comparisons
to the seven SOTA alternative methods are added to set strong baselines and for
completeness, as we evaluate YOLOv5-6D as a new architecture in general.

Table 7.3 Comparison of YOLOv5-6D on LINEMOD data in terms of the 2D reprojection metric.

Object YOLO6D YOLOv5-6D

Ape 92.10 99.24
Benchvise 95.06 99.61

Cam 93.14 99.71
Can 97.44 99.80
Cat 97.41 99.80

Driller 79.41 98.61
Duck 94.65 99.16

Eggbox 90.33 99.34
Glue 96.53 99.61

Holepuncher 92.86 99.91
Iron 82.94 99.59

Lamp 76.87 98.85
Phone 86.07 99.52

Average 90.37 99.44

7.4.2 Inference time
To assess the real-time performance of the proposed YOLOv5-6D model, aimed at
achieving 30 FPS, we have conducted a comparative analysis of its inference time
against other leading 6-DoF pose estimation methods. This comparison is carried
out under uniform hardware conditions (see Section 7.3.7) to ensure fairness,
unless otherwise stated. We have employed each method as described in the
respective research papers and as made publicly available. In all cases, we use the
LINEMOD cat dataset (640×480×3 pixel images) with corresponding pre-trained
weights for the cat object, with the exception of GEN6D (no object specific model
is required). The text below summarizes our findings.

• YOLO6D achieves a total inference time of 17.9 ms per frame (55.8 FPS),
which is 5 FPS faster than originally reported. This includes image loading
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to GPU (0.6 ms), model forward pass (4.5 ms), and filtering the predictions
(12.8 ms).

• PVNet yields an inference time of 32.4 ms (30.9 FPS), encompassing data
loading time (3.5 ms), PVNet model forward pass (17.6 ms), and the RANSAC-
based voting scheme (11.3 ms) used to obtain the reported accuracy.

• EfficientPose (ϕ=0) demonstrates a pose prediction time of 36.8 ms (27.15 FPS),
comparable to the reported 27.45 FPS. This includes data preprocessing
(14.1 ms) and model inference (22.7 ms).

• RNNPose utilizes initial poses from PVNet (no end-to-end solution is devel-
oped), with refinement inference time depending on the employed number
of recurrent and rendering cycles. Each recurrent iteration involves corre-
spondence field (CF) estimation (11.0 ms), pose optimization (0.4 ms), and
CF rectification (4.4 ms) for a total execution time of 15.8 ms. The render-
ing cycle includes reference image rendering (9.4 ms), 3D feature rendering
(3.6 ms), image feature encoding (2.6 ms), followed by the earlier mentioned
recurrent iterations. As depicted in the RNNPose paper (Figure 5 & Ta-
ble 2), approximately four rendering cycles (4 total) with each running four
recurrent iterations (16 total) are required to obtain the SOTA LINEMOD per-
formance reported in the paper. In addition to the rendering cycles modules
(15.6×4=62.5 ms) and recurrent iterations (15.8×16=253.0 ms), a once-off
data loading time (2.9 ms) and running the 2D-3D Hybrid Net (2.1 ms)
brings the refinement execution time to 320.5 ms and the total execution
time (with the addition of PVNet initial poses without RANSAC voting) to
341.6 ms (2.93 FPS).

• EPro-PnP exhibits a rapid inference time of 10.1 ms (98.5 FPS), requiring
0.3 ms for image-crop data loading, 4.8 ms for the model forward pass,
1.1 ms for postprocessing, and 3.9 ms for the PnP calculation. However, the
2-stage approach requires an earlier model to detect the objects of interest
and provide exact crops to the EPro-PnP part. The research largely improves
on the earlier work of Li et al. called CDPN [321], which utilizes the same
2-stage approach. While EPro-PnPv2 employs Faster-RCNN [75], a rela-
tively old and slower object detection algorithm, no investigation has been
conducted into how the model performs based on the provided input crop.
Alternatively, in the CDPN approach (Table 3 & 4) the authors show that by
using YOLOv3 they obtain slightly lower performance (ADD(-S) 89.80 with
YOLOv3 vs. ADD(-S) 89.86 with Faster-RCNN), but with a significant speed
improvement (30 ms vs. 76 ms). Since neither a detection implementation
is discussed, nor provided along with EPro-PnPv2, we have employed the
YOLOv3-based performance reported in CDPN [321] in this comparison.
This enables a total EPro-PnPv2-based pose prediction in 40.2 ms (24.9 FPS).

• Gen6D, a 3D object model-free and generic estimation model, achieves a
novel object pose prediction at 427.26 ms per frame (2.34 FPS), including
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initial object detection (125.7 ms), viewpoint selection (37.1 ms), and pose
refinement (3×88.0 ms=256.1 ms).

• YOLOv5-6D realizes single-shot object 6-DoF pose estimation at 41.88 FPS
(inference time of 23.88 ms per frame). Table 7.4 depicts the exact execution
time per module of the YOLOv5-6D model for both the LINEMOD and the
newly introduced X-ray datasets.

For a comprehensive comparison, we include Figure 7.8 to illustrate the speed ver-
sus average accuracy trade-off on the LINEMOD dataset. The proposed YOLOv5-
6D enables single-shot, real-time object 6-DoF pose estimation, demonstrating its
efficacy on both the LINEMOD and the new larger X-ray datasets. This compari-
son highlights the balance between speed and accuracy of 6-DoF pose estimation
methods and underscores the efficiency of the proposed model. Finally, the results
of all findings are summarized in Table 7.6.

Figure 7.8 Accuracy and inference-time comparison of YOLOv5-6D and competitive alternative
methods. Measurements are obtained with a unity batch size.

7.4.3 X-ray pose estimation
Section 7.1 and Section 7.3.1 presents the hard requirements for an object 6-DoF
pose estimation method to be successful in the medical X-ray domain. In sum-
mary, the method needs to be (1) very accurate, (2) incorporate image acquisition
geometry and (3) fast, to enable real-time analysis. Given these strict require-
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Table 7.4 YOLOv5-6D inference time on the LINEMOD and X-ray datasets. Measurements are
obtained with a unity batch size.

Operation LINEMOD X-ray
Image size 640×480×3 960×742×1

Tensor to cuda 0.22 ms 0.20 ms
Predict 23.03 ms 29.82 ms
Filter predictions 0.52 ms 0.42 ms
ePnP 0.11 ms 0.07 ms

Total time 23.88 ms 30.51 ms
Frame rate 41.88 FPS 32.78 FPS

ments and the analysis of the results of the various methods on the LINEMOD
dataset, YOLOv5-6D presents itself as the only viable candidate in the X-ray do-
main. To test this assertion, we conduct experimental analysis of YOLOv5-6D
and EfficientPose(ϕ=0) in the X-ray domain. The quantitative results of the ex-
periments on the X-ray datasets can be observed in Table 7.5 and corresponding
qualitative results are shown in Figure 7.9.

Table 7.5 Performance of YOLOv5-6D and EfficientPose on the X-ray Cube and X-ray Screw
datasets at various distance thresholds. It should be noted that the employed parameter d is 30 mm
for the Cube dataset and 34.3mm for the Screw datasets.

Model Eff.Pose YOLOv5-6D
Metric [mm] Cube Val. Cube Val. Screw Val. Screw Test

ADD(-S) 0.1·d 0.0 99.27 96.87 92.41
ADD(-S) 0.05·d 0.0 97.08 87.50 81.01
ADD(-S) 1.0 mm 0.0 93.43 75.0 55.70
ADD(-S) 0.02·d 0.0 82.48 65.62 43.04

3D Transl. error [mm] 13.8 ± 4.5 0.35±0.21 0.82±0.43 1.27±0.47
3D Angle error [deg.] 33.7 ± 8.3 1.45±1.29 3.18±1.72 3.79±2.72

The conducted experiments show that the YOLOv5-6D model can predict rele-
vant 2D keypoints for accurate 6-DoF pose estimation, notably also in challenging
scenarios like the X-ray datasets, where the focal length varies by up to 28 cm and
the object undergoes translation and rotation. In contrast, EfficientPose tends to
converge to a mean pose present in the Cube dataset, reflecting its low perfor-
mance in such settings. This is expected due to the ambiguity present in the pose,
if the method does not have access to camera intrinsic parameters during training.

Specifically, for the X-ray datasets featuring two small instruments, the YOLOv5-
6D model achieves a high accuracy of 99.27% for the asymmetrical cube and
96.41% for the symmetrical bone screw. At a 1-mm distance threshold, the pose of
the asymmetrical cube is estimated with a 93.43% accuracy. Similarly, at a 1-mm
threshold, the pose of the symmetrical bone screw is accurately acquired in 75%
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of the validation cases. The same model trained on images only containing the
screw (and heavy augmentation) is then applied to the screw and the spine phan-
tom dataset (Screw Test). The model shows comparable and high accuracy at the
0.1·d (3.43 mm) and 0.05·d (1.72 mm) threshold, but experiences a large drop in
performance at the smaller distances. We do not report the 2D reprojection error
in the X-ray datasets, because the symmetry around the z-axis of the screw allows
for multiple plausible 2D keypoint predictions that will resolve the correct object
pose. This is visually proven and illustrated in Figure 7.9. Lastly, Table 7.4 depicts
the inference time of the YOLOv5-6D model for the two domains.

7.5 Discussion
A novel YOLOv5-6D method for accurate 2D keypoint prediction and associated
pose estimation is developed, while considering the image acquisition geome-
try. Prior keypoint-based methods are not fast or accurate enough for real-world
applications, especially in the medical domain where accuracy is essential. The
YOLOv5-6D model builds on advancements in the YOLO object detection series,
to improve prediction accuracy of 2D keypoints and enable correct pose estimation
through solving pose with PnP using the 2D/3D object bounding-box correspon-
dences. In addition, we have presented a new data capturing method for 6-DoF
tasks that utilizes an optical camera attached to the X-ray detector. The approach
allows for data acquisition across all X-ray geometries and objects, without adding
image artifacts (such as AruCo markers or calibration domes) to the final X-ray
image, or relying on accurate X-ray system sensors to acquire object-pose labels.
The YOLOv5-6D method generalizes across domains and imaging systems. This

Table 7.6 Pose estimation method properties based on the LINEMOD dataset.

Method Task-agnostic Cam. Intrinsic Real-Time ≥ 90 Acc.

YOLO6D - ✓ ✓ -
PoseCNN - - - -
PVNet - ✓ ✓ -
Gen6D ✓ - - -
EfficientPose - - - ✓
RNNPose - ✓ - ✓
EPro-PnPv2 - ✓ - ✓
YOLOv5-6D - ✓ ✓ ✓

generalization is evident from (1) its application to the RGB images, (2) X-ray
images obtained with different acquisition geometries and (3) different levels of
semantic complexity in the X-ray image contents.

With respect to the first (1) aspect of generalization, the YOLOv5-6D model
shows competitive results on the public LINEMOD RGB dataset with an average
ADD(-S) score of 96.84% compared to the current SOTA (RNNPose [313]) with
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EfficientPose

YOLOv5-6D

Figure 7.9 Example predictions for qualitative evaluation on the Cube Validation, Screw Validation
and Screw Phantom Test datasets. The first column presents images in the original resolution and
the second highlight a zoomed area. Green 3D bounding boxes visualize ground-truth poses, while
the estimated poses are highlighted by blue boxes. The average 3D vertices distance for YOLOv5-6d
is shown in the floating text box with a color representing pass (green) or fail (red) by the 1-mm
ADD(-S) metric. Images are rendered with the respective code bases.
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97.37%, as depicted. in Table 7.2. However, the proposed method is considerably
faster (41.88 FPS vs. 27.15 FPS of EfficientPose) in execution at this level of accuracy
and leverages the imaging geometry, as summarized in Figure 7.8 and Table 7.6.
These characteristics make the method appealing for real-time instrument pose
estimation in the X-ray domain.

The second (2) aspect is addressing generalization towards different X-ray
geometry. Here, images are obtained with various hardware configurations using
higher input image resolution. The images are without depth information and
typically contain low contrast of the objects of interest. The proposed YOLOv5-6D
successfully predicts relevant 3D bounding-box keypoints for both X-ray objects
included in this research, enabling highly accurate pose estimation (Table 7.5) with
a translation error of only 0.35 mm±0.21.

The third aspect (3) is about generalizing across different levels of semantic
complexity. The model trained for screw pose estimation in a simple training en-
vironment generalizes to the new and more clinically-relevant domain containing
the human phantom. This generalization is evident from Table 7.5. Most notably,
the proposed approach is able to accurately estimate the pose of a small cannu-
lated cancellous bone screw up to an impressive 75.0% at 1 mm by the ADD(-S)
metric on the validation set. In addition, the same model generalizes well to the
new and more complex test set containing a spine phantom. Here, we observe a
similarly high 92.41% ADD(-S) score at 0.1·d. As a very hard final test, we evaluate
the pose accuracy at 1 mm ADD(-S), which shows a drop to 55.70% in comparison
to the validation set. This performance drop is expected due to the stringency of
the test, but we consider that it can be rather traced to inaccuracy in the labels.
For example, prior to the labeling process, the offset from the instrument to the
ChArUco frame is manually and precisely measured. However, with the screw
being placed in a spine phantom, this measurement becomes considerably more
difficult and error prone. Our measurements for acquiring the ground-truth labels
of the test set are likely to be off by ±1 mm, which results in a lower performance of
the proposed model at these distances. The performance of the proposed method
on these 4 datasets expresses the generalization ability of the method and future
research can further elaborate on testing with other instruments.

This research is one of the first to propose tracking the actual screw, instead
of the surgical path or screw placement tools for assisted clinical guidance. The
YOLOv5-6D method enables accurate and fast 6-DoF pose estimation of the screw
with respect to the X-ray detector or source. By combining this method with a
spine tracking system, such as the one proposed by Manni et al. [344], the screw
pose can be determined with respect to the target location on the spine, enabling
precise screw placement and its validation without the need for postoperative CT.

7.6 Future work and limitations
In this study, we have focused on single-object and single-class pose estimation
and have not collected data to investigate multi-object and multi-class pose esti-
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mation. However, simultaneous multi-object pose estimation is an intriguing area
of future research in the context of spinal screw placement, as multiple screws are
typically used in this procedure. We conjecture that the proposed YOLOv5-6D
model can be leveraged for estimating the pose of multiple similar-sized screws
without the need to retrain the model. In scenarios where multiple identical screws
of different sizes (multi-class) are used, the ill-posed nature of X-ray imaging may
hinder the ability to distinguish these objects individually. Nonetheless, it is worth
noting that the screws used during the clinical procedure are known beforehand,
and the corresponding 3D screw model can be manually linked to accurately de-
termine the pose of each screw, regardless of its size. This presents an exciting
opportunity for future research to explore the feasibility and effectiveness of this
approach in the context of spinal screw placement.

Furthermore, we show that the model successfully estimates the screw pose
outside of its training distribution. However, it is still evaluated in a rather simple
context and future work needs to fully explore the limitations of the approach
under more clinically relevant conditions.

While we investigate object pose estimation under variable X-ray imaging
geometry, similar challenges arise outside of the medical domain, such as optical
cameras with adjustable focal lengths used for zooming. In these zooming cases,
this change in imaging geometry should be carefully considered and should facil-
itate accurate object pose estimations from the captured image, in order to enable
re-use of the proposed framework. Moreover, satellite pose estimation [345], [346]
is a domain that already faces this challenge and can straightforwardly benefit
from the proposed approach.

7.7 Conclusion
In this chapter, we have discussed the development and evaluation of a novel
YOLOv5-6D model for accurate 6-DoF instrument pose estimation in X-ray imag-
ing, with a focus on providing clinical guidance under varying image acquisition
geometries. The proposed model leverages recent advancements in the YOLO
object detection series to significantly enhance the accuracy of pose estimation,
addressing the stringent requirements of real-time medical applications.

The motivation for this work stems from the complexity and error-prone nature
of fluoroscopy-guided minimally invasive interventions, which rely heavily on
repeated acquisition of standard projections for instrument guidance. Standard
methods, while effective, often require extensive external equipment and fail to
provide real-time validation through actual screw tracking. The proposed method
aims to overcome these limitations by offering a deep learning-based approach
for instrument tracking that incorporates the changing imaging geometry, which
is critical for applications like X-ray imaging and space satellite pose estimation.

The chapter has introduced a novel data collection method using an external
optical camera for automated and precise data labeling across diverse X-ray ge-
ometries. The need for a fast, accurate and generalizable 6-DoF pose estimation
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method is addressed, by excluding the X-ray imaging geometry from the keypoint
prediction task and then utilizing the intrinsic camera parameters in the pose
estimation process. Through this process, the model has been designed to acquire
accurate poses under changing acquisition geometries. The model demonstrates
generalization capabilities through successful performance on datasets of varying
complexity, including transitioning from a controlled lab environment to a clini-
cally relevant setting with a spine phantom, thereby proving its robustness and
applicability in real-world medical scenarios.

In the conducted experiments, the YOLOv5-6D model demonstrated competi-
tive results on the public LINEMOD dataset, achieving an average 0.1·d ADD(-S)
score of 96.84% and operating at a real-time speed of up to 42 FPS. These results
are significantly faster compared to existing methods with comparable accuracy.
Additionally, the model’s performance on two new X-ray datasets —-one contain-
ing a calibration cube and the other a clinically relevant cancellous bone screw—-
showcases its robustness and accuracy in the challenging X-ray domain. Specif-
ically, the model achieves a high 0.1·d ADD(-S) performance of 92.41% on the
spine-phantom test set, highlighting its potential for real-world clinical applica-
tions.

The work also indicates the importance of incorporating the imaging geometry
into the pose estimation process, enabling the YOLOv5-6D model to generalize
across different imaging system geometries and complex environments. The pro-
posed method offers a practical solution for real-time instrument pose estimation
during minimally invasive surgeries, significantly reducing the need for postop-
erative CT scans and extensive external equipment.

In conclusion, the YOLOv5-6D model presents a significant advancement in
the field of object pose estimation in X-ray imaging, particularly for medical ap-
plications. By addressing the technical challenges and demonstrating strong per-
formance across different datasets, the work sets the stage for further exploration
and refinement in both medical and non-medical domains. Future research can
extend this approach to multi-object and multi-class pose estimation, as well as
explore its applicability in other areas requiring variable imaging geometries.
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8.1 Conclusions of the individual chapters
This thesis has presented significant advancements in various computer vision
techniques, demonstrating enhanced detection capabilities and improved preci-
sion in guidance systems. We have introduced a PDAC detection framework that
leverages external tumor-indicative features, leading to increased detection accu-
racy. Furthermore, the thesis details improvements in segmentation uncertainty
quantification, enabling more flexible distribution modeling and incorporating
full-3D information for uncertainty estimation. These methods have been applied
to the segmentation of PDAC and surrounding anatomical structures, facilitat-
ing automated resectability prediction. Two novel Out-of-Distribution detection
approaches have been presented: (1) wavelet-based normalizing flows for seman-
tic OOD detection, enabling unsupervised malignant melanoma detection, and
(2) covariate shift detection by modeling heteroscedastic high-frequency image
components, ensuring the reliability of the images used. Finally, a novel pose esti-
mation technique, YOLOv5-6D, has been introduced that is capable of accurately
estimating the 6-Degrees-of-Freedom (6-DoF) of objects under various imaging
geometries.

This section summarizes the results of the individual chapters. Section 8.2
comes back on the research questions posed in Chapter 1 and provides a detailed
discussion of the answers to these questions. Section 8.3 presents an outlook on
future directions and associated research themes.

Chapter 2 provides the necessary technical background information and a brief
introduction to the deep learning-based image analysis algorithms applied in this
thesis. The chapter introduces the technical advancements in developing deep
learning-based image analysis algorithms for classification, segmentation, object
detection and pose estimation. An overview of generative models, specifically
Variational Autoencoders (VAEs) and Normalizings Flows (NFs) is presented.
Finally, the concept of uncertainty modeling in deep learning is described.

Chapter 3 has explored the development and implementation of a Computer-
Aided Detection (CADe) system for Pancreatic Ductal Adenocarcinoma (PDAC).
The proposed framework integrates secondary tumor-indicative features with
advanced deep learning techniques to improve the accuracy and reliability of
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PDAC detection. The comprehensive evaluation has demonstrated high detection
accuracy (0.99 AUROC) based on high sensitivity and specificity, indicating the
robustness of the model across both internal and public datasets. The integration
of external, clinically-relevant features, processed through a Residual 3D U-Net,
has shown significant promise in enhancing early detection of PDAC, which is
crucial for improving patient outcomes. This chapter sets the stage for subsequent
discussions on segmentation and resectability assessment, laying a solid foun-
dation for the thesis’ overarching goal of improving methods and modeling for
cancer detection and procedure guidance.

Chapter 4 has presented significant advancements in uncertainty quantifi-
cation within medical image segmentation. By extending the capabilities of the
Probabilistic U-Net (PU-Net) and incorporating normalizing flows (NFs), the re-
search has addressed the critical need for better modeling of aleatoric uncertainty.
The novel methods proposed for both 2D and 3D segmentation contexts have
been rigorously evaluated, showing improvements in key metrics, like General-
ized Energy Distance (GED) of 14% and Hungarian-matched Intersection over
Union (IoU) of 13%. These advancements not only enhance the reliability of seg-
mentation models, but also contribute to their practical applicability in clinical
settings, where understanding and conveying interobserver and intraobserver
variability is essential for informed decision-making. The chapter underscores the
importance of continuous improvement in uncertainty quantification to support
the safe and effective use of CADx in healthcare.

Chapter 5 has focused on predicting the resectability of pancreatic tumors, a
critical aspect of PDAC treatment management. Building on the detection and
segmentation techniques discussed in preceding chapters, this chapter introduces
a deep learning-based framework for assessing tumor-vessel involvement, which
is a key determining factor of resectability. The integration of uncertainty model-
ing, particularly in capturing the complexities of tumor-vessel interactions, rep-
resents a significant step forward in developing a Clinical Decision Support Sys-
tem (CDSS). The findings of this chapter suggest that the proposed models can
provide accurate and clinically relevant predictions (0.92 scan-level sensitivity and
0.89 scan-level specificity), aiding surgeons in making better-informed decisions
about the feasibility of surgical interventions. This chapter also highlights the po-
tential of a deep learning-based image analysis method to enhance personalized
treatment strategies and improve survival rates in pancreatic cancer.

Chapter 6 has addressed the critical challenge of Out-of-Distribution (OOD)
detection, which is essential for ensuring the robustness and reliability of images
and automated analysis models in real-world applications. The introduction of
image-frequency decomposition-based Normalizing Flows (NFs) for OOD de-
tection, particularly in the context of melanoma (semantic OOD) and covariate
shift detection (covariate OOD), marks a significant innovation in the field. The
methodologies developed in this chapter, including the novel CovariateFlow, in-
dicate that different frequency bands can be more informative for OOD detection
than modeling the complete image distribution. In the semantic OOD case, model-
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ing the low-frequency bands with WaveletFlow provides an improved malignant
melanoma detection (0.78 AUROC, up 5% over the full distribution). In the co-
variate case, modeling the heteroscedastic high-frequency components realizes
an increase in performance of 5-10% AUROC (depending on the dataset). These
methods provide a comprehensive framework for detecting and managing OOD
data, thereby improving the generalization ability of machine learning systems.
These contributions are crucial for advancing the safe integration of ML methods
into clinical practice.

Chapter 7, the final technical chapter, has delved into the development of a
novel YOLOv5-6D model for accurate 6-Degrees of Freedom (DoF) instrument
pose estimation in X-ray imaging. This chapter is demonstrating that the proposed
model is able to meet the stringent requirements of real-time medical applications,
particularly in fluoroscopy-guided interventions for spinal screw placement. The
proposed algorithm explicitly benefits from the advancements in the YOLO de-
tection series to enable speed and keypoint prediction accuracy improvements.
Additionally, excluding camera parameters from the modeling component, but
including them in the pose estimation part, enables generalization across dif-
ferent imaging geometries. The model’s robustness across different imaging ge-
ometries and its high accuracy in both laboratory (99.27% ADD, Cube dataset)
and clinically-relevant setting (92.41% ADD(-S) Screw phantom test dataset) un-
derscore its potential for real-world implementation. The chapter concludes by
highlighting the broader implications of this research for both medical and non-
medical domains, suggesting avenues for future exploration in multi-object and
multi-class pose estimation.

8.2 Discussion on research questions
This section evaluates the proposed solutions with regards to the research ques-
tions presented in Section 1.5.

RQ1: Incorporating domain-specific knowledge in PDAC detection

RQ1a: Can we effectively include PDAC-indicative features into a PDAC CADe
system to enhance the detection performance?

The thesis addresses this research question in Chapter 3, by discussing the
critical role of secondary, PDAC-indicative features to clinicians in the conven-
tional detection process. Key anatomical structures are identified, particularly the
pancreas and bile ducts, and incorporated in a multi-stage PDAC CADe system.

The approach begins with the segmentation of these tumor-indicative features
with an advanced 3D U-Net architecture. These models allow for a comprehensive
view of the pancreas in CT scans and lay the groundwork for adding secondary
features that often correlate with PDAC, such as bile duct dilation, pancreatic
duct abnormalities, and contour irregularities. By segmenting these secondary
indicators, the CADe system aligns more closely with clinical diagnostic meth-
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ods, which can enhance early detection of PDAC, especially in cases where the
tumor may not be prominently visible on imaging. These segmented features
are then channel-wise concatenated along with the CT scan and provided to the
primary detection model —-a 3D U-Net-— which processes both the tumor and
surrounding anatomy, allowing for a nuanced analysis of spatial relationships
critical for accurate PDAC identification. This integration of secondary indicators
into the detection model has led to a marked improvement in sensitivity (1.0±0.0)
and specificity (0.99±0.02), thereby boosting the system’s ability to reliably detect
early-stage PDAC. By concatenating the tumor-indicative anatomical structures
along with the CT scan, the model learns to effectively extract features from the set
to optimize the tumor detection performance. This approach enables a data-driven
way to learning the weighting and importance of each feature towards to final
task. However, it is not known whether the concatenation operation is optimal, or
if other feature integration methods will yield better results.

Experimental validation within the thesis confirms the model’s enhanced per-
formance when secondary features are included. Nevertheless, the research notes
in Section 3.6 that there are limitations that may inhibit the conclusions drawn
from the obtained results in the context of the research question. The dataset used
for training is from a single center and relatively small, which introduces further
challenges. A small dataset can hinder the generalization ability of the model and
reduce the statistical power of the results. Particularly related to the acquisition
and integration of the secondary features, one major challenge is the variability in
the appearance and prominence of these features across different patients, which
makes it difficult to determine the performance of the model. The chapter also dis-
cusses the challenge of acquiring high-quality annotated data for these secondary
features, as this data is essential for training and validating the models, but are
extremely time-consuming to obtain. These constraints emphasize the need for
larger, more diverse datasets to improve model performance and reliability.

Despite these challenges, the automated, secondary-feature enhanced CADe
framework aligns well with clinical workflows, potentially reducing false nega-
tives and enabling radiologists to interpret results with greater confidence.

RQ1b: What is a possible setup for a complete end-to-end pancreatic CADe system?
Chapter 3 presents a workflow consisting of several key stages for an effec-

tive and complete end-to-end PDAC CADe system. In addition, a larger, more
comprehensive dataset is employed to validate this end-to-end system.

Starting with a high-resolution CT scans, the first critical component discussed
is the segmentation of the pancreas from the CT volume. Localization of the pan-
creas focuses the subsequent analyses and enhances the execution speed of the
the complete detection process. The pancreas are segmented with a U-Net on
a coarse (downsampled) CT scan. The second component entails a large crop
around the coarse segmentation, taken from the high-resolution scan and utilized
by a fine-grained pancreas segmentation model. The same crop is exploited by the
third component to segment the surrounding anatomical structures, such as the
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common bile duct and pancreatic duct. From the segmentation of the pancreas
(Components 1 and 2) and ducts (Component 3), the detection task is focused
on the pancreatic region, while sufficient context is provided for the detection
and classification of the tumor itself (Component 4). This task is carried out with
an improved Residual 3D U-Net. The integration of secondary features, as dis-
cussed in response to RQ1a, plays a crucial role at this stage. The experimental
results (Chapter 3) show how the combination of primary tumor detection with
secondary feature analysis leads to more accurate and reliable diagnoses, reduc-
ing the number of false positives and improving the system’s overall sensitivity.
This process enables an AUROC score of 0.99 on the internal test set, proving the
effectiveness of the approach.

Finally, these components are integrated into a unified CADe system with
automated intermediate processing steps to enable a seamless workflow that
allows for analysis and feedback. The development of a web-based application
that brings together all these components, providing an interface that can be used
by clinicians to review and analyze results. The integration of the system into
clinical practice is discussed, while providing insights into how such systems can
be adapted to fit the workflow of different medical institutions, ensuring that they
provide clear benefit to clinicians and patients alike.

Although the proposed approach is not extensively compared against other
setups, it forms a feasible solution for a complete end-to-end detection system. Ad-
ditionally, it performs PDAC detection in a similar order as the clinical procedure,
where the pancreas is first localized, external indicators for tumor are marked and
then a detailed and focused analysis of the tumor region is carried out.

In conclusion, an effective end-to-end pancreatic CADe system consists of a
pancreas localization component, followed by extracting tumor-indicative features
to maximally enable PDAC segmentation. The high detection accuracy obtained
is indicative of the system’s capability to reliably distinguish pancreatic tumors,
underscoring its potential for early detection and its value as a clinical support
tool in pancreatic cancer assessment.

RQ2:Accurate ambiguity modeling for improved segmentation

RQ2a: How can we model ambiguous ground-truths (aleatoric uncertainty) to improve
the accuracy of segmentation maps?

To address the challenge of accurate segmentation of structures under am-
biguous ground truths, a probabilistic framework is introduced that captures and
expresses this aleatoric uncertainty in Chapter 4. The core of this approach lies in
the use of the Probabilistic U-Net (PU-Net), which is designed to model multiple
plausible segmentation outcomes, rather than producing a single deterministic
result. This method is particularly well-suited for medical images where ground
truths can be ambiguous, due to variations in human annotation as a result of
two forms of ambiguity. The first ambiguity arises from uncertainties in the data,
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such as the image quality (noise, contrast) and imaging protocol (MRI vs. CT). The
second from of uncertainty arises from annotation process. Experts performing
the annotation have a given time (to annotate) and knowledge about the particular
case. This results in variations between annotations of the same case from different
annotators (interobserver), but also varying degrees of accuracy of different cases
from the same annotator (intraobserver).

To address the variability introduced through the annotation process, the PU-
Net utilizes a conditional Variational Autoencoder (cVAE) framework, which
allows the model to learn a distribution over possible segmentation maps, thereby
capturing the aleatoric uncertainty inherent in the data and annotations.

To further enhance the accuracy of segmentation under the aleatoric uncer-
tainty conditions, Section 4.3 of the thesis proposes augmenting the posterior
distribution in the PU-Net with Normalizing Flows (NFs). NFs increase the flex-
ibility of the posterior, allowing it to capture more complex distributions that
better reflect the variability and uncertainty in the ground-truth data. The thesis
presents compelling evidence that when augmenting the Gaussian posterior in the
PU-Net with Normalizing Flows (NFs), a substantial improvement in the quantifi-
cation of aleatoric uncertainty is achieved. The standard PU-Net that assumes a
Gaussian distribution for the posterior, is somewhat limited in its ability to model
the true variability in the data. By incorporating NFs, the posterior distribution
becomes more expressive that with a Gaussian alone, allowing it to better capture
the complexities of the annotation data. This enhancement is crucial for accurately
reflecting the uncertainty present in ambiguous ground-truth data.

Experimental results discussed in Chapter 4 demonstrate that the use of NFs
leads to improved performance on key metrics. For instance, the GED metric,
which measures the diversity of the predicted segmentation maps, shows an im-
provement of 14% when NFs are used. Similarly, there is a notable increase (13%)
in Hungarian-matched IoU, indicating that the model’s predictions are more accu-
rate and better aligned with the ground-truth annotations. Qualitative evaluations
further supported these findings, with the NF-augmented models showing greater
agreement with ground truths, particularly in the central regions of segmentation
structures, while still appropriately expressing uncertainty at the edges where
annotators are more likely to disagree.

RQ2b: Does aleatoric uncertainty modeling in 3D improve the accuracy, consistency
and execution speed?

Three-dimensional medical imaging data (such as CT) is is richer and more
informative than the individual 2D CT slices. This is further emphasized when
evaluating complex 3D structures. As a consequence, the PU-Net has to be up-
graded to 3D modeling. The introduced 3D PU-Net, as described in Section 4.4.1,
leverages the spatial context provided by 3D medical imaging data. Extending
the PU-Net to 3D processing significantly enhances the model’s ability to con-
sistently and accurately quantify aleatoric uncertainty in the original 3D data.
Qualitatively, this 3D approach enables the model to better capture the anatomical
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continuity and contextual information across different slices of a volume, leading
to more consistent segmentation maps and a more reliable assessment of uncer-
tainty. Quantitatively, moving from the 2D PU-Net to 3D PU-Net leads to a 4%
improvement in the 2D GED, and a low distance metric value (0.422) of the now
possible GED measured over three dimensions.

Subsequently, it is demonstrated that incorporating Normalizing Flows into
the 3D PU-Net further improves its performance. The 3D extension, combined
with NFs, allows the model to generate more diverse and accurate segmentation
maps. The experimental results with Planar Flows show a further improved 3D
GED (6.8%) and Hungarian-matched 3D IoU (2%) metrics, which indicate that the
3D model not only provides more accurate segmentation but also better captures
the uncertainty across the entire volume of the data giving higher consistency of
the segmentation structures. Additionally, considering the computational speed
of the 3D PU-Net, it is noted that although the architecture requires more com-
putational resources, the benefits in terms of accuracy, consistency and execution
speed (3.4 times faster than the 2D PU-Net) justify the increased complexity. The
3D approach is particularly effective in scenarios where understanding of the
spatial relationships within the data is crucial, such as in the segmentation of lung
nodules or other complex anatomical structures.

RQ3: Exploring uncertainty modeling in PDAC resectability prediction

RQ3a: How accurate should a PDAC and relevant vasculature segmentation algo-
rithm be to obtain a feasible automated prediction of resectability?

Chapter 5 of the thesis discusses the implementation of a deep learning-based
approach to accurately segment both pancreatic ductal adenocarcinoma (PDAC)
and the relevant vasculature, which is crucial for predicting tumor resectability.
The chapter details the use of advanced segmentation models, specifically focusing
on U-Net architectures, enhanced with additional context information from sur-
rounding anatomical structures. These models are trained on annotated CT scans,
where both the tumor and key vascular structures, such as the superior mesenteric
artery (SMA) and superior mesenteric vein (SMV), are carefully labeled to ensure
precise segmentation.

The results presented in this chapter demonstrate that the models are capa-
ble of achieving a high accuracy for segmentation of both the PDAC (0.66 DSC)
and surrounding vasculature (arteries 0.86 DSC, veins 0.88 DSC). This accurate
segmentation is critical for assessing the extent of tumor involvement with the vas-
culature, which is a key determinant in deciding whether the tumor is resectable.
By accurately delineating the boundaries of the tumor, and its relationships with
nearby blood vessels, the model provides essential information to make informed
decisions about surgical options.

From the obtained segmentation maps, a degree of tumor involvement with
the vasculature can automatically be computed. The models demonstrate high
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accuracy in detecting any tumor involvement, with the 3D U-Net achieving the
highest sensitivity (0.88) and specificity (0.86). Furthermore, classification of the
extent of the involvement is achieved with a high 0.89 accuracy with the Prob. 3D
U-Net.

The provided results are based on a limited set of experiments from a small
single-center dataset. With the obtained high segmentation quality, the resectabil-
ity prediction accuracy is sufficiently high to align with clinical evaluations. This
automated approach is shown to align closely with regular assessments made
by a clinical expert, contributing to a reliable and consistent tool for resectability
prediction.

RQ3b: Is the integration of model uncertainty into prediction models applicable and
sufficiently useful for resectability prediction?

The research introduces the concept of utilizing model uncertainty to poten-
tially enhance the clinical relevance of resectability predictions. Chapter 5 dis-
cusses the integration of uncertainty quantification into the segmentation and
resectability prediction pipeline. By combining aleatoric (data-related) uncertain-
ties and epistemic (model-related) uncertainties, the model provides a nuanced
prediction that highlights areas where the model is less confident. It is quanti-
tatively shown that through probabilistic modeling of the segmentation maps,
a higher alignment (Prob. 3D U-Net R2 0.6, up from R2 0.54 with deterministic
methods) with the ground-truth degree of involvement is achieved. Qualitative
evaluation depicts the impact of the three approaches (nnU-Net, 3D U-Net OLL,
Prob. 3D U-Net OLL) have on the degrees of involvement. The Prob. 3D U-Net,
capable of handling the uncertainty in the CT domain, presents a more consistent
resectability prediction that more closely aligns with the clinical assessment.

This information is crucial in a clinical setting, where surgeons need to under-
stand not only the likely outcome, but also the confidence level of the predictions.
For example, in cases where the model indicates high uncertainty in the segmen-
tation of the tumor’s boundary with a major vessel, clinicians can be alerted to
review those areas more closely, or consider additional diagnostic imaging prior
to making any surgical decision. This early approach does not offer numerical
certainty in the prediction result, but it improves reliability through the collab-
oration between the model and a clinician. Hence, this joint approach enhances
the reliability of resectability predictions and supports more informed and safer
clinical decision-making.

RQ4: Density modeling for Out-of-Distribution Detection

RQ4a: Can generative models effectively detect and quantify semantic and/or covariate
shifts in natural and X-ray images?

Generative models demonstrate significant potential in detecting and quan-
tifying semantic images, by modeling underlying data distributions and iden-
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tifying deviations indicative of anomalies or distribution shifts. Chapter 6 has
investigated their application in semantic Out-of-Distribution (OOD) detection,
particularly within the context of imbalanced datasets which are common in skin
melanoma research. Leveraging the unsupervised capabilities of Normalizing
Flows (NFs), these models are explored as tools for identifying malignant skin
melanoma by training exclusively on benign cases. However, challenges emerge
when generative models prioritize general features like image entropy (e.g., high-
frequency elements such as hair) over truly semantic attributes, thereby limiting
their ability to assign meaningful malignancy scores. The state-of-the-art GLOW
NF model, designed to capture the full-image data distribution, underscores these
limitations with a modest AUROC of 0.73 in distinguishing benign from malig-
nant melanoma. These findings align with broader literature, highlighting that
while generative models hold promise for semantic OOD detection, their reliance
on generalized likelihoods rather than domain-specific features may constrain
their effectiveness in nuanced medical imaging tasks. In conclusion, off-the-shelf
generative models, such as GLOW, are limited in their ability to accurately detect
OOD semantic shift in natural images.

Furthermore, Section 6.4.3 in the thesis explores the application of generative
models for the detection and quantification of covariate shifts in natural images
and X-ray images. This is essential for maintaining the reliability of images and
of AI systems in dynamic environments. The thesis examines several generative
models, including reconstruction-based evaluation for Denoising Diffusion Proba-
bilistic Models (DDPM), likelihood-based evaluation of Variational Autoencoders
(VAEs) and Normalizing Flows (NFs). However, the analysis reveals that many of
these methods exhibit a predisposition towards certain types of features, which
limits their effectiveness in the detection of a broad range of covariate shifts. For
instance, the DDPM, VAEs and GLOW, when evaluated with log-likelihood, per-
form well at the detection of noise-based shifts or any shift that increases the image
high-frequency components. However, the models fail to detect any change that
reduces the amplitude of high-frequency and low-frequency components, such
as decrease of contrast. Meanwhile, when the GLOW model is evaluated with
typicality it performs in an opposite manner. The model can detect these contrast
changes, but it fails to detect changes such as additional noise. Extending the
application of these models to the X-ray domain further supports these findings.
The modes/severity levels of covariate shift in the X-ray setting is arranged in a
subjectively increasing order, with Mode 0 having the lowest noise and Mode 5
the most. In line with the observation on natural images, it is shown that all model
families perform well at detecting this increasing level of noise (covariate shift).

RQ4b: How can high-frequency heteroscedastic image components be explicitly mod-
eled and does this lead to improved OOD covariate shift detection performance?

Building on the limitations discussed in RQ4a, Chapter 6 further expands on
generative models for covariate shift detection. In the chapter, a novel approach is
proposed that explicitly models the conditional distribution of high-frequency het-
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eroscedastic components within images to improve OOD detection performance,
particularly for covariate shifts. Through a single Gaussian filter decomposition
step, the image can be split into low-frequency and high-frequency images. The
high-frequency parts are then modeled, conditioned on the low-frequency parts,
by using a Normalizing Flow (NF). By explicitly modeling these components, the
approach captures the In-Distribution (ID) variability in high-frequency details
that are affected by covariate shift, while alleviating the complexity in modeling
the complete image distribution. This complete image distribution may not be
consistently represented across different datasets, making it particularly effective
in distinguishing in-distribution and Out-of-Distribution (OOD) samples. This
simple setup allows for modeling the heteroscedastic image components.

To effectively exploit the newly proposed modeling of image components, a
new metric is introduced. The research in Chapter 6 proposes a method to unify
the typicality and log-likelihood (LL) metrics for OOD detection within NFs. The
independent evaluation of these methods express predisposition to specific types
in distribution shift. Utilizing the strengths of each metric, the normalized score
distance (NSD) is proposed as a unification metric, by simultaneously employing
typicality and LL. It is on these premises that CovariateFlow is proposed as a
novel method for accurate OOD covariate shift detection.

The findings from the conducted analyses validate the hypothesis that OOD
covariate shifts can be effectively identified by explicitly modeling the condi-
tional distribution between low-frequency and high-frequency components. The
proposed CovariateFlow model, designed specifically to capture this distribu-
tion, surpasses other methodologies in detecting covariate shifts in natural-image
datasets like CIFAR10 vs. CIFAR10-C (74.9 % AUROC) and ImageNet200 vs.
ImageNet200-C (72.2 % AUROC).

In an additional series of experiments, the proposed approach is also applied
to a newly collected X-ray dataset. Covariate shift detection within X-ray imag-
ing is of critical importance to accurately identify OOD shifts to maintain the
reliability and diagnostic accuracy of medical imaging systems. The proposed
CovariateFlow model shows robust performance in detecting subtle covariate
shifts across various imaging modes (only outperformed by GLOW with LL due
to its high sensitivity to noise-based shifts). The results highlight that, while high-
parameter count architectures, like GLOW, can capture a wide range of image
statistics, CovariateFlow excels particularly when evaluated using the Normal-
ized Score Distance (NSD) metric, while additionally offering a smaller model
size. This superior performance, coupled with its efficiency, underscores Covari-
ateFlow’s potential as a reliable and effective tool for ensuring the consistency and
safety of X-ray imaging systems, making it a valuable tool in clinical settings.

Overall, CovariateFlow with NSD proves to be a robust and generic method
for OOD detection, demonstrating its effectiveness in both natural images and for
X-ray imaging data.
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RQ4c: Do the decomposed frequency components of an image contain sufficient infor-
mation to improve OOD detection performance?

The thesis provides substantial evidence in Chapter 6 supporting the efficacy
of decomposing images into frequency components to improve OOD detection in
both semantic and covariate OOD detection.

Semantic OOD Detection: The decomposed frequency components, particularly
the low-frequency components of an image, play a crucial role in improving se-
mantic OOD detection. By utilizing wavelet-based Normalizing Flows (Wavelet
Flow), the low-frequency components help capture the general structure of the im-
age, which is essential for identifying semantic anomalies. This method is shown
to be effective in detecting unseen malignant melanoma when trained on benign
melanoma data alone. The model’s focus on low-frequency wavelet components
allows for better differentiation between ID and OOD samples based on their
semantic differences, thereby improving semantic OOD detection performance
and thus enhancing the reliability of OOD detection in clinical settings.

Covariate OOD Detection: In contrast, for covariate OOD detection, the de-
composed high-frequency components of an image contain essential information
that improves detection performance. The research introduces the CovariateFlow
model, which explicitly models high-frequency heteroscedastic components con-
ditionally on low-frequency components. This approach captures subtle changes
in high-frequency details, which are often indicative of covariate shifts. These
shifts, though not always visible in low-frequency data, can be detected when the
conditional high-frequency components are analyzed. CovariateFlow’s ability to
model these high-frequency variations lead to superior performance in detect-
ing covariate shifts, particularly in experiments involving datasets like CIFAR10
and ImageNet200. The model effectively identifies and quantifies covariate OOD
shifts, further validating the importance of frequency decomposition in enhancing
OOD detection.

In conclusion, the decomposed frequency components provide valuable and
sufficient information for both semantic OOD and covariate shift detection. It is
shown that the low-frequency components fuel improved semantic OOD detec-
tion performance, while heteroscedastic high-frequency components provide suf-
ficient and critical information to improve covariate OOD detection. This research
presents a robust solution for OOD detection in medical and natural images by
leveraging frequency decomposition, ultimately advancing the accuracy of OOD
detection methods.

RQ5: Instrument Pose Estimation in X-ray

RQ5a: How to develop a general-purpose method that is both accurate and fast for
6-DoF pose estimation?

Significant advancements in the development of a general-purpose 6-DoF pose
estimation method are proposed in Chapter 7, leveraging the latest improvements
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in the YOLO object detection series. The proposed YOLOv5-6D model represents
a major step forward in achieving both high accuracy and real-time performance.
The model’s architecture is designed to efficiently predict 2D keypoints corre-
sponding to the vertices of an object’s 3D bounding box from a single X-ray image.
These predictions are then used in conjunction with a Perspective-n-Point (PnP)
algorithm to estimate the object’s full 6-DoF pose. The use of advanced feature
extraction techniques, such as CSP-Net and BiFPN, enables the model to detect
objects at multiple scales and accurately localize keypoints, even in challenging
X-ray images with low contrast and variable object sizes.

A key innovation of the YOLOv5-6D model is its ability to perform pose es-
timation in a single-shot manner, which drastically reduces the computational
overhead compared to multi-stage approaches with seperate detection and pose
estimation steps. This efficiency is crucial for maintaining the speed necessary for
real-time applications. The model’s performances on the LINEMOD dataset and
the newly acquired X-ray datasets demonstrate its ability to balance accuracy with
speed, achieving up to 42 FPS, while delivering competitive accuracy on standard
benchmarks. This balance makes YOLOv5-6D a strong candidate for deployment
in clinical settings, where the ability to quickly and accurately estimate the pose
of surgical instruments can enhance the precision of minimally invasive proce-
dures. Additionally, the model’s general-purpose design allows adaptation and
application in other domains beyond medical imaging.

RQ5b: How can X-ray data and the imaging geometry be effectively incorporated
into the 6-DoF pose estimation process, and what impact does this have on the model
performance?

Incorporating X-ray imaging geometry into the 6-DoF pose estimation process
is crucial for maintaining the accuracy and robustness of the model across differ-
ent clinical setups. Chapter 7 emphasizes the importance of accounting for the
intrinsic and extrinsic parameters of the X-ray system, such as the source-image
distance (SID) and detector field of view (FOV), which can vary significantly dur-
ing a procedure. These parameters directly influence the appearance of the object
in the X-ray image and, if not considered, can lead to substantial errors in pose
estimation. The YOLOv5-6D model addresses this challenge by incorporating
these imaging parameters into the PnP-based pose estimation process, allowing
the model to accurately recover the 6-DoF pose of an object, despite changes in
the imaging setup.

The integration of imaging geometry not only enhances the accuracy of the
pose estimation, but also improves the model’s ability to generalize across dif-
ferent X-ray systems. Since the trained model only predicts 2D keypoints, the
intrinsic parameters can be dynamically adjusted during inference to obtain the
object pose. This property enables the model to handle variations in the X-ray
setup without requiring retraining or manual recalibration. Such capability is
particularly beneficial in medical settings, where the X-ray system’s configura-
tion may need to be frequently adjusted to optimize the visualization of different
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anatomical structures during surgery. The experimental results presented in the
chapter demonstrate that the YOLOv5-6D model can maintain high accuracy in
natural images (LINEMOD 96.84% ADD(-S)) and in X-ray settings (Cube Val.
99.27% ADD, Screw Val. 96.87% ADD-S, Screw Test 92.41% ADD-S), even under
varying acquisition geometries, with a translation error as low as 0.35 mm. The
obtained level of precision is critical for applications like spinal screw placement,
where even small deviations can lead to suboptimal outcomes. In contrast, the re-
sults obtained with EfficientPose, a method that does not incorporate the imaging
geometry, fails completely in the X-ray setting. Overall, these results highlight the
robustness and generalization ability of the proposed YOLOv5-6D model.

8.3 Future directions and research challenges
This thesis has advanced the state-of-the-art in the four major topics discussed
and has opened several future directions and research challenges. These avenues
promise to push the boundaries of current methodologies.

8.3.1 Pancreatic cancer treatment
The development and deployment of deep learning-based Computer-Aided De-
tection (CADe) systems for pancreatic cancer, particularly pancreatic ductal ade-
nocarcinoma (PDAC), face significant challenges. The scarcity of large, diverse,
high-quality labeled datasets is a critical hurdle. Future research should focus
on fostering collaboration and data sharing among expert centers to overcome
this limitation. Moreover, the translation of these algorithms into clinical practice
necessitates further exploration into improving model robustness, reliability, and
transparency in evaluation metrics. Interactive AI, which combines the pattern
recognition abilities of AI with the domain knowledge of clinicians, presents a
promising direction to enhance the robustness of these systems in clinical settings.

8.3.2 Uncertainty quantification in medical imaging
The work presented in this thesis has focused on improving uncertainty quantifi-
cation in medical image segmentation, particularly in challenging scenarios with
ambiguous ground truths. This research employs methods capable of explicitly
modeling the ambiguity inherently present in the data through the use of the
cVAE augmented with NFs integrated in the PU-Net framework. However, other
methods that implicitly model ambiguity exist. These methods, while potentially
less transparent, often yield competitive performance and can be more straightfor-
ward to implement. Future research should investigate whether there is an added
benefit to explicitly modeling uncertainty beyond the performance metrics, such
as improved interpretation or trustworthiness in clinical applications.

Additionally, future work should explore avenues to further improve the mod-
eling capacity of the PU-Net’s latent space. While this research has demonstrated
the effectiveness of combining NFs with the PU-Net to enhance uncertainty quan-
tification, there is still potential for refining this approach.
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8.3.3 Out-of-Distribution detection
Although this thesis has contributed to refining techniques in both semantic and
covariate OOD detection, there is still considerable room for improvement. Future
research should focus on developing methods that can disentangle and identify
the types of shifts with high accuracy. Moreover, it is essential to ensure that
the correct OOD detection method is employed in the appropriate context. For
example, when the primary goal is early detection of anomalies or diseases, the
model should prioritize semantic OOD detection to focus on identifying new
or rare conditions. Conversely, when the goal is to ensure the consistency and
reliability of imaging data, covariate shift detection should be emphasized.

Further exploration is needed to enhance the sensitivity and specificity of
these detection methods, particularly in complex, real-world clinical environments
where both semantic anomalies and covariate shifts can occur simultaneously.

8.3.4 Pose estimation
Future research in pose estimation should explore the development of model-
free methods that can predict poses with high computational efficiency without
requiring extensive retraining on new data.

In the longer term, pose estimation research will largely be fueled by progress
in robotics and augmented reality. The work presented in this thesis on pose
estimation is one of the first to bring this technology to the medical domain, where
its applications will continuously grow to ultimately be integrated into medical
robotics. Such systems will be employed for a variety of surgical applications
where higher precision and consistent quality are essential.

8.3.5 Medical image analysis in practice
Despite the significant advancements of deep learning models for medical image
analysis in laboratory settings, their clinical adoption remains limited. This can
be attributed to a range of factors such as models struggling when exposed to
the variability of real-world data, the need for robust technical infrastructure and
governance surrounding the use of AI in clinical practice. Additionally, several
nuanced and less commonly discussed factors contribute to the limited adoption
of deep learning models in clinical practice.

• Overemphasis on generalization may be overrated: There is a prevailing belief
that models must generalize across diverse populations and imaging settings
to be useful. While this is an admirable goal, it may not always be practi-
cal or necessary. Instead, localized/specialized models tailored to specific
institutions or demographics can yield high performance and fast adoption.

• Clinicians may resist, not lack literacy: It is often assumed that clinicians need
more AI training for adoption to succeed. However, resistance might not
stem from a lack of literacy, but more from mistrust in models that are ”black
boxes”, have inconsistent performance, or disrupt existing workflows. Clin-
icians’ resistance may reflect generic legitimate concerns about AI systems
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interfering with their decision-making autonomy and accountability.
• Overly ambitious multi-functionality systems and complex deployment pipelines:

Industry developers frequently aim to create multi-purpose models that
address a wide range of clinical tasks, from diagnostics to triage and treat-
ment planning. While this versatility looks desirable at first glance, it signif-
icantly increases the complexity of development and regulatory approval.
Additionally, this leads to complex deployment pipelines with resource-
intensive infrastructure, such as cloud computing, high-performance GPUs,
and real-time data streaming. Lightweight, edge models or hybrid solutions
combining on-device and cloud processing could streamline adoption.

By addressing these challenges with innovative, localized solutions, fostering trust
among clinicians, and advocating for adaptive regulatory frameworks, the field
can unlock the full potential of deep learning in supporting clinical practice.

8.3.6 Outlook on generalist vs. domain-specific models
Much of the work in this thesis is rooted in domain-specific advancements, while
the broader trend in ML research is the rise of generalist AI, which present both
opportunities and challenges for the field.

The current trajectory of mainstream ML research emphasizes the creation of
increasingly large, general-purpose models capable of performing a broad set of
tasks across diverse domains. These models, such as foundation models in natural
images and multi-modal AI systems, demonstrate impressive versatility and high
general performance. However, without additional fine-tuning, they often face
significant challenges in providing the level of accuracy, robustness, and system
understanding required in specialized high-risk domains such as healthcare. For
these domains, task-specific models remain indispensable due to their ability to
incorporate domain expertise, focus on effective use of computational resources,
and yield results that are both actionable and explainable. Even in a speculative
future where general intelligence achieves human-like reasoning or even exceeds
it, it is likely that domain-specific models will continue to be developed. From an
efficiency standpoint, the creation of specialized models tailored to particular tasks
allows for the optimization of resources, both computational and data-related.

The rise of generalist AI should inspire researchers to explore new horizons.
However, it is essential to recognize that the coexistence of generalist and spe-
cialist approaches is not only inevitable, but also necessary. Much like the rise of
the personal computer alongside centralized mainframes, the future will see large
generalist foundation models coexisting with specific, embedded, and personal-
ized models. This evolution mirrors historical patterns, demonstrating once again
how technological progress balances scale with individual adaptability. History,
as always, repeats itself, albeit in different instances.
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A Additional technical details

This appendix provides foundational insights into three technical areas utilized in
this thesis: an overview of uncertainty quantification methods (Section A.1), the
YOLO6D architecture (Section A.2) and dequantization in NFs (Section A.3).

A.1 Overview of uncertainty quantification methods
This section provides a clear, high-level summary of widely used deep learning
methods for quantifying uncertainty in classification tasks, categorized by the
type of uncertainty they address.

Type Method Brief Description

Ep
is

te
m

ic

Bayesian Neural Net-
works

Introduces uncertainty in weights by treating them as distri-
butions from which can be sampled.

Dropout as a Bayesian
approximation

Uses dropout during inference to estimate model uncertainty.

Deep Ensembles Trains multiple models and averages their predictions to
quantify model uncertainty.

M-Heads Shared backbone, M output heads (often referred to as “ex-
perts”).

A
le

at
or

ic

Test-Time Data Aug-
mentation (TTA)

Applies transformations to input data to measure variability
due to noise in the data.

Heteroscedastic Neural
Networks

Directly models the variance of the output to capture data
uncertainty.

Temperature Scaling Calibrates confidence scores to better reflect aleatoric uncer-
tainty.

Table A.1 High-level overview of popular deep learning-based methods for uncertainty quantifica-
tion in classification tasks.
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A.2 Overview of the YOLO 6D
This sections provides an overview of the YOLO 6D processing chain.
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A.3. Dequantization in NFs

A.3 Dequantization in NFs
Normalizing flows are powerful generative models that transform simple, known
probability distributions into more complex ones through a series of invertible
functions. They are inherently designed to model continuous probability density
functions (PDFs). However, in practice, data is often discrete. Directly applying
continuous models to discrete data without adjustment can lead to non-ideal solu-
tions where the model focuses narrowly on the discrete points, thereby neglecting
the overall distribution shape. Dequantization effectively converts discrete data
into continuous data, allowing for the application of continuous modeling tech-
niques. This is achieved by adding a carefully chosen noise component to each
discrete data point. The continuous representation, x̃, of a discrete variable x is
then expressed as:

x̃ = x+ u (A.1)

where u is a noise variable drawn from a noise distribution q(u|x) with support in
the interval [0, 1). This transformation expands the domain of each discrete value
∗x into a continuous interval. For instance, a value x = 0 is mapped to an interval
[0.0, 1.0), and x = 1 to [1.0, 2.0), and so forth.

The probability density of the dequantized data can be modeled as:

pX =

∫
pX(x+ u)du =

∫
q(u|x)
q(u|x)

pX(x+ u)du = Eq(u|x)
[
pX(x+ u)

q(u|x)

]
. (A.2)

This integral represents the expected value of the likelihood ratio between the
probability densities of the transformed (continuous) data and the noise, averaged
over the noise distribution. The choice of noise distribution q(u|x) is crucial and
typically can be uniform, as it simplifies integration and ensures coverage of the
entire range [0,1).

Variational dequantization [286] extends the concept of dequantization by in-
troducing a learnable noise model instead of a fixed one. This approach leverages
variational inference to optimize the noise distribution q(u|x) directly as part of
the training process. The goal is to minimize the discrepancy between the em-
pirical distribution of the dequantized data and the model’s distribution. This
optimization allows for more flexible and potentially more accurate modeling of
complex data distributions.

In summary, dequantization is a crucial step in adapting normalizing flows
for discrete data, and variational dequantization further enhances this approach
by making the noise addition process adaptable for specific data characteristics.
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B CADe in Pancreatic Ductal
Adenocarcinoma

B.1 Challenges in AI data representativeness, biases and con-
founders

The implementation of AI in healthcare, while promising, has encountered sig-
nificant hurdles related to data representativeness, biases, and the presence of
confounding factors. Despite the potential of AI to discern intricate patterns
within complex datasets, its effectiveness can be compromised by these inher-
ent limitations, which hinder widespread adoption and the generalizability of AI
applications [40], [347], [348].

Generalizability remains elusive for many AI models due to the necessity
for highly representative and diverse datasets that accurately mirror the target
population. Variability in data collection methods and population characteristics
across different healthcare settings often results in models that perform well in one
setting but poorly in another. This issue was starkly highlighted in a study on the
detection of abnormal chest radiographs, where the specificity of a model varied
dramatically, ranging from 0.57 to 1.00 across five different datasets [349]. To
address this, leveraging independent local datasets that reflect specific population
characteristics as supplementary training material can potentially enhance an
algorithm’s adaptability prior to broader application.

Furthermore, the risk of inherent biases within training datasets poses a sig-
nificant challenge. These biases may stem from a variety of factors, including
incomplete data capture, insufficient sample sizes, and errors in data measure-
ment or classification. Such biases not only undermine the reliability of model
predictions, but may also perpetuate or exacerbate socioeconomic inequalities
within healthcare systems [350], [351]. For example, problematic biases have been
observed in non-healthcare AI applications, such as those predicting recidivism,
which have demonstrated racial discrimination [352]. Similarly, in healthcare,
algorithms designed to predict cardiovascular risks have shown biases against
non-white populations [353]. Employing tools like the Prediction model Risk of
Bias Assessment Tool (PROBAST) can aid in identifying and mitigating these risks
by evaluating the bias within AI prediction models [354].

Moreover, AI systems are susceptible to forming spurious correlations or con-
founding relationships, deriving conclusions from coincidental or irrelevant fea-
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tures present in the training data [40]. Notable examples in healthcare include
algorithms misidentifying the presence of rulers or surgical markings as indicators
of malignancy [355], [356]. Such misinterpretations emphasize the necessity for
thorough understanding and continual refinement of the features and biases AI
models learn.

In conclusion, while AI and data-driven methods holds transformative poten-
tial for medical diagnostics and treatment, ensuring the robustness, fairness, and
transparency of these systems is imperative. Ongoing development and rigorous
evaluation of AI technologies are essential to mitigate these challenges, enabling
more reliable and equitable healthcare solutions.

B.2 Discussion PDAC resectability
Accurate assessment of tumor and vascular involvement and determining the
appropriate treatment is still a growing problem with limited accurate methods
for assessment. Different scoring systems have been proposed to predict vascular
involvement and thus resectability status in pancreatic cancer patients [357], [358].
Given the beneficial effect of neoadjuvant treatment on cancer specific survival,
a recent study developed tumor-vessel interface criteria to predict vascular in-
volvement and resectability in borderline pancreatic cancer patients [359]. The
diagnostic performance for predicting vascular involvement was evaluated be-
tween 2 readers and showed an AUROC for agreement of 0.85 - 0.88 for arterial
invasion and 0.87 - 0.92 for venous invasion. In addition, CT texture analysis for
predicting resectability after neoadjuvant treatment has been introduced, provid-
ing important information regarding tumor characterization by quantifying tissue
heterogeneity and texture coarseness [360], [361].

This concludes the additional discussion of the work on in this thesis on data
quality and PDAC resectability prediction.
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C Uncertaintyquantification in
medical image segmentation

C.1 Datasets for 2D uncertainty quantification
This section provides additional details on the the datasets used in the 2D PU-
Net research for segmentation uncertainty quantification. Figure C.1 depicts four
examples from the LIDC-IDRI [196] dataset. On the left in the figure, the 2D
image slices from a CT volume containing the lesion is depicted, followed by
the four labels made by four independent annotators on the right. In Figure C.2,
eight examples from the Kvasir-SEG dataset [362] are depicted. The endoscopic
gastrointestinal polyp images and corresponding segmentation masks can be seen.

Figure C.1 Example processed images from the LIDC-IDRI dataset.
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Figure C.2 Example images from the Kvasir-SEG dataset.

C.2 GED at different sample sizes
The GED evaluation is dependent on the number of reconstructions sampled
from the prior distribution. Figure C.3 depicts this relationship for the vanilla,
2-planar and 2-radial posterior models. The error bars in the plot originate from
the deviations in the results when training with ten-fold cross validation. One
can observe that with increasing sample size, the GED as well as the associated
uncertainty decrease. This is also the case when the posterior is augmented with
a 2-planar or 2-radial flow. Particularly, the uncertainty in the GED evaluation
significantly decreases.

C.3 Prior distribution variance
An investigation into whether the prior distribution captures the degree of ambi-
guity in the input images was conducted. For every input image X, we obtain a
latent L-dimensional mean and standard deviation vector of the prior distribution
P (µ,σ|X).

The mean of the latent prior variance vector µLV , is obtained from the input
images in an attempt to quantify this uncertainty. Figure C.4 shows this for several
different input images of the test set. As can be seen, the mean variance over
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C.3. Prior distribution variance

(a) LIDC test set

(b) Kvasir-SEG test set

Figure C.3 The GED based on sample size evaluated on the vanilla, 2-planar and 2-radial models.
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Figure C.4 Depiction of the prior variance for various images. In the CT image, the mean of the
prior distribution variance of the 2-planar model is shown. The input CT image (column 1 and 4),
its average segmentation prediction from 16 samples (column 2 and 5) and ground truth from four
annotators (column 3 and 6) are depicted.

the latent prior increases along with a subjective assessment of the annotation
difficulty.

C.4 Dataset for 3D uncertainty quantification
This section provides additional details on the the datasets used in the 3D PU-
Net research for 3D segmentation uncertainty quantification. In line with the
work on 2D segmentation uncertainty, we employ the LIDC-IDRI [196] dataset,
however, the complete 3D nodule volume is extracted instead of 2D slices. We
preprocess the CT scans by clustering all nodule annotations for a scan through
a computation of a distance measure between the annotations. If an annotation
is within one-voxel spacing of that particular CT scan from another annotation,
it is grouped to belong to the same nodule. The scan is resampled to 0.5 mm
along the x, y-dimensions and 1 mm along the z-dimension to obtain uniform
voxel spacing between all samples. This is followed by cropping the CT scan
and resulting annotations based on the center of the first assessor’s mask with a
dimension of 96×180×180 voxels in the z, x, y-dimensions. Finally, if the nodule
does not have at least four annotations, the ground-truth (GT) masks are filled with
empty annotations. Figure 4.6 depicts four ground-truth annotations of a nodule
in the CT scan. Figure C.5 depicts a 3D visualization of the mean ground-truth
annotation for another nodule from different angles.
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C.4. Dataset for 3D uncertainty quantification

Figure C.5 Visualization from different angles of mean 3D segmentation of a lung nodule.
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D OOD detection

This appendix providing more information in relation to the OOD detection work
is organized as follows. Section D.1 describes the implementation details of all
the models employed in this research. Section D.2 has a step-by-step rundown
on how we obtain the Normalized Score Distance. Section D.3 provides detailed
results on CIFAR10 and CIFAR10-C of the experiments and Section D.4 results
on ImageNet200 and ImageNet200-C as described in the Experiments section of
Chapter 6 on covariate shift detection. Additional information about the X-ray
experiments are provided in Section D.5 and Section D.6. Finally, we provide a
series of additional ablation experiments in Section D.7.

D.1 Implementation details
In this section, we detail the unsupervised training methodologies employed for
five distinct baseline models and CovariateFlow aimed at OOD detection.

VAE and Adversersial VAE: The VAE is trained to minimize the standard
ELBO [259] loss. Model evaluations using SSIM and KL-divergence presented the
best AUROC results. The AVAE model integrates adversarial training [48] into
the variational autoencoder framework to enhance its capability in generating
realistic samples. For OOD detection, one can leverage the reconstruction loss
(Mean Squared Error (MSE)), the KL-divergence and the discriminative loss to
compute a OOD score. We adopt the implementation described in [267]. In both
the VAE and AVAE we employ a 4 layer deep network with a latent dim=1024.
The models were trained for 200 epochs following a cosine annealing learning
rate scheduler.

VAE-FRL: The VAE with frequency-regularized learning (FRL) [291] intro-
duces decomposition and training mechanism which incorporates high-frequency
information into training and guides the model to focus on semantically relevant
features. This proves effective in semantic OOD detection. We employ the pre-
trained model as publicly available1. For the CIFAR10 experiments, the model
consists of a standard 3 layer deep VAE with strided convolutional down-sampling

1https://github.com/mu-cai/FRL/tree/main
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layer, transposed convolutional up-sampling and ReLu non-linear functions. The
model has a latent dimension of 200. The OOD score is obtained by the log-
likelihood (lower bound in the case of the VAE) minus the image complexity. The
formulation is given as

S(x) = − log pθ(x)− L(x),

where L(x) is the complexity score derived from data compressors [253], such as
PNG.

Denoising Diffusion Probabilistic Model: We implemented the Denoising
Diffusion Probabilistic Model (DDPM) following the specifications outlined in
[269] and as publicly available 2. The method employs a time-conditioned UNet [12]
architecture with a simplified training objective where the variance is set to time-
dependent constants and the model is trained to directly predict the noise ϵ at
each timestep t:

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt)∥2

]
. (D.1)

We aim to reconstruct an input xt across multiple time steps (t), utilizing the
DDPM sampling strategy which necessitates t steps for each reconstruction x̂0,t,
with each step involving a model evaluation. To enhance efficiency, we leverage
the PLMS sampler [363], a recent advancement in fast sampling for diffusion mod-
els, which significantly decreases the number of required sampling steps while
preserving or enhancing the quality of samples. For evaluating the reconstruc-
tions, we employ both the mean-squared error (MSE) between the reconstructed
and the input image, and the Learned Perceptual Image Patch Similarity (LPIPS)
metric [364], the latter of which assesses perceptual similarity through deep fea-
ture distances. For each of the N reconstructions we compute these 2 similarity
measurements. Finally we average these scores (over the two metrics and all the
reconstructions) to derive an OOD score for each input, integrating both quantita-
tive and perceptual accuracy assessments.

The model architecture is implemented exactly as described in [269]. For train-
ing, we set T = 1000 and employed a linear noise schedule, with βt ranging from
0.0015 to 0.0195. The training process spanned 300 epochs, utilizing the Adam
optimizer with a learning rate of 2.5e−5. During the testing, we utilized the PLMS
sampler configured to 100 timesteps and, in line with AnoDDPM [261], we only
test reconstructions from T = 250. Since we do not intend to detect semantic
anomalies in this work and are more interested in high frequency image compo-
nents, we focus on reconstructions later in the schedule.

Finally, we experiment with the DDPM model trained on CIFAR10 and eval-
uated at different reconstruction starting points. Figure D.6 depicts our results
obtained with different reconstruction starting points and the average AUROC
across all the degradations in CIFAR10-C.

2https://github.com/marksgraham/ddpm-ood
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D.2. Detailed analysis of the normalized score distance (NSD)

GLOW: Normalizing Flows enable OOD detection by modeling the ID data
distributions with invertible transformations through a maximize the log-likelihood
training objective. We employ the GLOW [206] architecture, as publicly available 3,
in this study. Additionally, following the recent work in typicality (Section 6.4.5),
we train our model with the approximate mass augmented log-likelihood objec-
tive as described in [258]. We incorporate the approximate mass as a component
in the loss function formulation. Let L(x; θ) = log(p(x; θ)) denote the average
log-likelihood (LL) of the model, parameterized by θ, evaluated over a batch of
input data x. Our revised training objective is expressed as:

min
θ

(
−L(x; θ) + α

∥∥∥∥∂L(x; θ)∂x

∥∥∥∥) (D.2)

where α > 0 signifies a hyperparameter that balances the trade-off between lo-
cal enhancement of the likelihood and reduction of the gradient magnitude. We
employ α = 2 in the GLOW implementation. At test time, we compute the per
sample LL and gradient score. These components are used to compute the NSD
as described in Section 6.5.2.A.

CovariateFlow: Section 6.5.2 describes the CovariateFlow model proposed
in this work. Figure 6.9 depicts the architecture and general flow of information
during training and when computing the OOD scores. Figure 6.10 illustrates a
detailed diagram of the low-frequency conditioned coupling steps employed in
the model. Additionally, following the image decomposition through the Gaus-
sian filtering, we encode the individual components as 16-bit depth data to avoid
information loss. Our model is completely invertible and can thus also generate
signal-dependent high-frequency components. The models are prepared follow-
ing the typicality augmented training objective (Equation D.2). We use an Adam
optimizer (starting lr = 5e−4) with a one-cycle annealing learning rate scheduler
for 300 epochs across all our experiments. The code for the model is available at
https://github.com/covariateflow/CovariateFlow.

D.2 Detailed analysis of the normalized score distance (NSD)
This section details the computation of the NSD from the LL and typicality score.
Figure D.5 depicts this process through the evaluation of the GLOW model ap-
plied to three different OOD covariate shifts. In Figure D.1 the LL and typicality
(gradient score) of the model subject to Gaussian Noise can be seen. Following
the process described in Section 6.5.2.A, column 2 depicts the standardization of
both scores using validation statistics. This is followed by converting the scores
to absolute distance from the expected mean in column 3. The LL distance and
gradient score distance can then simply be added to obtain a unified distance

3https://github.com/y0ast/Glow-PyTorch
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(Figure D.1). The same flow is depicted in Figure D.3 and Figure D.4 for Contrast
change. Following this standardized approach, the change in each measure (LL
and gradient score) w.r.t. the validation statistics are utilized and combined to pro-
vide a single and effective OOD score. All the results depicted in The Figure D.5
depicts the ID CIFAR10 test scores vs. the OOD CIFAR10-C scores.

Figure D.1 Top row: Log-likelihood of CIFAR10 vs. Gaussian Noise
5, the normalized LL and the absolute value of the normalized LL.
Bottom row: Gradient score of CIFAR10 vs. CIFAR10-C Gaussian
Noise 5, normalized gradient score and the absolute value of the nor-
malized gradient score.

Figure D.2 The sum of
the normalized LL dis-
tance and the normalized
gradient distance shown
as a unified normalized
score distance (NSD)

Figure D.3 Top row: Log-likelihood of CIFAR10 vs. Contrast 5, the
normalized LL and the absolute value of the normalized LL.
Bottom row: Gradient score of CIFAR10 vs. Contrast 5, normalized
gradient score and the absolute value of the normalized gradient score.

Figure D.4 The sum of
the normalized LL dis-
tance and the normalized
gradient distance shown
as a unified normalized
score distance (NSD)

Figure D.5 Histograms of test results of GLOW trained on CIFAR10 and evaluated on CIFAR10-C
Gaussian Noise, Gaussian Blur and Contrast. The unification between log-likelihood and typicality
to compute the Normalized Score Distance (NSD) is depicted.
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D.3 Detailed results on CIFAR10 vs. CIFAR10-C
The following section presents detailed results obtained with various models on
our experiments with ID CIFAR10 and CIFAR10-C as OOD.

Our analysis examines the reconstruction capabilities of the DDPM across var-
ious initial time steps, T . Figure D.6 presents the mean AUROC curve calculated
for reconstructions assessed using the LPIPS, MSE, or a combination of LPIPS and
MSE metrics at each time step. Notably, at larger time steps (e.g., T = 250), the
distinction in average reconstruction error between the ID CIFAR10 test set and
the OOD CIFAR10-C dataset becomes less pronounced, leading to inferior OOD
detection performance. This phenomenon is attributable to the high-level image
perturbations characteristic of OOD data, which are predominantly addressed
in the final stages of the diffusion process. In Contrast, initial diffusion stages
focus on generating lower-level image semantics, resulting in reconstructions that
significantly diverge from the test image, particularly in terms of low-frequency
components.

Figure D.6 Results obtained with the DDPM on CIFAR10 and CIFAR10-C. The figure depicts
mean AUROC obtained from reconstructions at different starting points, T. With covariate shift
being predominantly change in high-frequency components, reconstructions starting at T=20 shows
the best performance.

Figures D.5, D.6, and Table D.1, highlight the distinct sensitivities of log-likelihood
(LL) and gradient scores when applied to GLOW under severe Gaussian Noise
conditions, as depicted in Figure D.1. These metrics diverge in their assessment,
with LL clearly identifying distorted images as OOD, whereas gradient scores
suggest such images are more typical than even the ID data. Conversely, Fig-
ure D.3 demonstrates the opposite trend for contrast changed images, where LL
overestimates their likelihood relative to ID data, but gradient scores accurately
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classify them as OOD. These observations corroborate Zhang et al.’s theoreti-
cal insights [257] about the propensity of certain model-metric combinations to
misjudge the probability of natural images. To address these discrepancies, we
introduce the NSD metric, which synthesizes LL and gradient movements into
a unified OOD detection metric. Figures D.2 and D.4 validate the NSD metric’s
effectiveness in discerning OOD samples across both conditions, with extended
results available in the supplementary material.

Table D.1 depicts the AUROC for 3 degradations (each severity) from CIFAR-
10C that summarizes the performance of all the models employed in this work.
Figure D.7 additionally depicts the average AUROC of all the models at each
severity. We also present the complete performance evaluation of all the mod-
els on CIFAR10-C on all the degradtions and at every severity level. The re-
sults are depicted in order of presentation: DDPM T150-LPIPS (D.2), DDPM T20-
LPIPS+MSE (D.3), VAE (Table D.4), AVAE (Table D.5), GLOW-LL (Table D.7),
GLOW-Typicality (Table D.8), GLOW-NSD (Table D.9), CovariateFlow-LL (Ta-
ble D.10), CovariateFlow-Typicality (Table D.11) and CovariateFlow-NSD (Ta-
ble D.12).

Figure D.7 Illustration of model performance (average AUROC across all 19 degradations) per
severity level.
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Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 53.74 / 95.2 59.17 / 93.3 66.26 / 89.5 70.09 / 88.6 73.54 / 84.0 64.56 / 90.12
Shot Noise 52.78 / 95.8 53.83 / 95.2 61.61 / 91.9 65.4 / 88.0 72.95 / 81.8 61.31 / 90.54

Speckle Noise 52.19 / 96.0 52.19 / 96.0 59.51 / 92.6 67.72 / 86.5 74.94 / 77.8 61.31 / 89.78
Impulse Noise 61.15 / 92.2 68.9 / 86.1 76.25 / 77.1 86.74 / 53.6 91.72 / 39.6 76.95 / 69.72

Defocus Blur 50.17 / 96.3 54.95 / 93.7 67.72 / 89.4 81.99 / 70.6 96.95 / 14.1 70.36 / 72.82
Gaussian Blur 50.71 / 96.3 68.3 / 86.5 82.39 / 68.6 92.07 / 39.8 98.81 / 5.0 78.46 / 59.24

Glass Blur 64.67 / 85.1 63.36 / 85.1 57.20 / 87.1 73.2 / 89.3 66.29 / 77.6 64.94 / 84.84
Motion Blur 60.81 / 92.1 74.48 / 77.3 83.69 / 63.2 84.0 / 66.7 90.22 / 45.9 78.64 / 69.04

Zoom Blur 71.56 / 80.9 74.32 / 76.4 80.52 / 70.9 84.12 / 61.8 89.68 / 49.0 80.04 / 67.8
Snow 51.64 / 96.3 52.8 / 95.8 51.38 / 95.2 48.4 / 96.3 46.46 / 95.3 50.14 / 95.78

Fog 56.53 / 93.9 70.66 / 80.8 81.27 / 61.4 89.63 / 39.6 94.99 / 20.7 78.62 / 59.28
Brightness 50.2 / 96.0 48.75 / 96.4 47.56 / 96.9 46.16 / 96.9 44.4 / 97.4 47.41 / 96.72

Contrast 50.12 / 95.2 49.97 / 94.7 51.18 / 95.0 50.49 / 92.8 50.19 / 95.0 50.39 / 94.54
Elastic Transform 57.55 / 93.3 58.12 / 92.7 63.66 / 88.6 60.5 / 89.1 53.99 / 93.5 58.76 / 91.44

Pixelate 52.0 / 94.4 53.44 / 93.2 54.06 / 93.3 58.04 / 89.5 64.96 / 85.9 56.5 / 91.26
JPEG Compression 54.9 / 93.9 56.57 / 93.0 57.6 / 92.7 57.65 / 93.0 60.04 / 90.2 57.35 / 92.56

Spatter 55.48 / 93.5 60.96 / 92.6 61.25 / 89.4 56.48 / 90.3 63.88 / 86.1 59.61 / 90.38
Saturate 64.44 / 90.7 73.69 / 84.1 45.51 / 97.1 40.4 / 98.0 36.85 / 98.2 52.18 / 93.62

Frost 46.57 / 97.0 47.15 / 97.0 54.29 / 94.6 56.36 / 95.0 64.77 / 91.6 53.83 / 95.04

Table D.2 The performance of the Denoising Diffusion Probabilistic Model (DDPM) in detecting
out-of-distribution (OOD) covariate shift between CIFAR10 and CIFAR10-C datasets is evaluated.
The model is evaluated with a starting T=150 and using the LPIPS reconstruction metric. The
model achieves a mean Area Under the Receiver Operating Characteristic (AUROC) of 63.2% and
a False Positive Rate at 95% True Positive Rate (FPR95) of 84.0%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 75.55 / 79.1 91.74 / 30.8 98.2 / 5.0 99.14 / 2.2 99.57 / 1.3 92.84 / 23.68
Shot Noise 67.34 / 85.8 79.52 / 65.6 95.65 / 17.2 97.69 / 8.0 99.23 / 2.1 87.89 / 35.74

Speckle Noise 68.09 / 79.8 68.09 / 79.8 93.4 / 25.6 97.77 / 8.2 99.2 / 2.3 85.31 / 39.14
Impulse Noise 88.62 / 41.7 98.31 / 5.0 99.64 / 1.0 99.99 / 0.1 100.0 / 0.0 97.31 / 9.56

Defocus Blur 48.79 / 94.6 49.96 / 95.5 57.66 / 92.9 70.48 / 88.9 91.46 / 49.2 63.67 / 84.22
Gaussian Blur 48.65 / 95.4 58.56 / 93.4 70.64 / 87.6 82.24 / 76.6 95.11 / 30.3 71.04 / 76.66

Glass Blur 75.7 / 79.2 73.6 / 80.6 64.93 / 86.5 79.38 / 76.6 71.9 / 81.0 73.1 / 80.78
Motion Blur 54.68 / 93.4 64.04 / 91.5 72.44 / 86.0 72.64 / 88.1 79.69 / 81.8 68.7 / 88.16

Zoom Blur 62.21 / 91.4 65.0 / 89.7 69.71 / 85.3 73.18 / 84.2 78.89 / 79.5 69.8 / 86.02
Snow 58.47 / 93.8 66.97 / 89.0 63.95 / 91.3 59.71 / 94.4 56.71 / 96.7 61.16 / 93.04

Fog 54.46 / 92.1 62.74 / 86.0 69.58 / 77.9 77.22 / 73.8 86.11 / 54.0 70.02 / 76.76
Brightness 52.34 / 94.9 51.03 / 95.5 51.96 / 95.9 51.58 / 96.2 50.44 / 97.5 51.47 / 96.0

Contrast 48.24 / 95.4 48.47 / 95.4 48.31 / 95.6 46.2 / 95.9 44.95 / 95.9 47.23 / 95.64
Elastic Transform 52.07 / 94.0 52.03 / 93.8 55.79 / 93.8 52.77 / 93.1 50.06 / 93.7 52.54 / 93.68

Pixelate 50.41 / 95.4 54.13 / 93.9 53.29 / 93.4 57.41 / 91.5 61.82 / 91.1 55.41 / 93.06
JPEG Compression 54.49 / 93.8 55.73 / 92.4 56.5 / 92.8 56.4 / 91.5 58.97 / 90.4 56.42 / 92.18

Spatter 57.57 / 91.6 66.94 / 83.2 72.93 / 79.8 63.86 / 84.4 76.67 / 67.9 67.59 / 81.38
Saturate 53.83 / 95.9 61.16 / 94.6 51.18 / 95.4 55.59 / 92.2 61.01 / 91.5 56.55 / 93.92

Frost 51.76 / 96.5 54.24 / 97.3 61.21 / 95.4 63.83 / 94.9 70.32 / 86.5 60.27 / 94.12

Table D.3 The performance of the Denoising Diffusion Probabilistic Model (DDPM) in detecting
out-of-distribution (OOD) covariate shift between CIFAR10 and CIFAR10-C datasets is evaluated.
The model is evaluated with a starting T=20 and using the MSE + LPIPS reconstruction metric.
The model achieves a mean Area Under the Receiver Operating Characteristic (AUROC) of 67.8%
and a False Positive Rate at 95% True Positive Rate (FPR95) of 75.5%.
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D.3. Detailed results on CIFAR10 vs. CIFAR10-C

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 64.2 / 82.2 79.0 / 58.6 91.7 / 26.9 95.6 / 15.0 97.9 / 7.4 85.68 / 38.02
Shot Noise 58.4 / 88.7 66.4 / 79.3 84.5 / 48.3 90.4 / 33.9 96.3 / 14.7 79.2 / 52.98

Speckle Noise 58.8 / 88.8 72.4 / 74.9 79.4 / 64.6 90.1 / 42.7 95.6 / 22.8 79.26 / 58.76
Impulse Noise 75.9 / 67.6 91.0 / 33.0 97.2 / 11.6 99.8 / 0.9 100.0 / 0.1 92.78 / 22.64

Defocus Blur 42.8 / 96.2 32.2 / 97.6 24.6 / 98.5 20.2 / 98.8 13.1 / 99.4 26.58 / 98.1
Gaussian Blur 43.0 / 96.2 24.6 / 98.5 19.2 / 98.9 15.4 / 99.3 10.2 / 99.6 22.48 / 98.5

Glass Blur 60.9 / 92.4 58.5 / 93.9 44.3 / 96.2 64.3 / 92.2 49.4 / 95.8 55.5 / 94.1
Motion Blur 31.8 / 97.7 24.0 / 98.6 18.6 / 99.1 18.6 / 99.1 14.8 / 99.4 21.56 / 98.78

Zoom Blur 27.5 / 98.2 23.9 / 98.4 21.0 / 98.6 18.5 / 98.8 15.7 / 99.1 21.32 / 98.62
Snow 58.2 / 89.4 65.8 / 81.2 71.1 / 75.6 70.2 / 75.6 65.3 / 83.7 66.12 / 81.1

Fog 31.9 / 98.1 16.6 / 99.4 10.2 / 99.6 7.0 / 99.7 4.2 / 99.7 13.98 / 99.3
Brightness 52.4 / 94.6 54.6 / 93.5 56.7 / 92.6 58.0 / 92.4 59.0 / 92.4 56.14 / 93.1

Contrast 23.8 / 98.8 5.4 / 99.8 2.0 / 99.9 0.5 / 100.0 0.0 / 100.0 6.34 / 99.7
Elastic Transform 37.3 / 97.2 33.5 / 97.7 27.6 / 98.2 27.2 / 98.4 30.4 / 98.0 31.2 / 97.9

Pixelate 49.0 / 95.3 48.1 / 95.6 47.5 / 95.8 45.9 / 96.0 43.1 / 96.3 46.72 / 95.8
JPEG Compression 49.7 / 95.1 48.5 / 95.5 47.9 / 95.6 47.4 / 95.8 46.7 / 95.7 48.04 / 95.54

Spatter 57.6 / 89.7 68.4 / 76.8 77.3 / 61.6 73.8 / 78.1 83.2 / 66.1 72.06 / 74.46
Saturate 42.4 / 96.7 42.4 / 96.9 59.1 / 91.9 69.1 / 86.3 76.3 / 82.1 57.86 / 90.78

Frost 51.8 / 93.6 53.1 / 92.7 48.1 / 93.1 44.5 / 94.2 38.4 / 95.2 47.18 / 93.76

Table D.4 The performance of the VAE model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using MSE
+ KL-divergence + Adversarial as metric. The model achieves a mean Area Under the Receiver
Operating Characteristic (AUROC) of 48.9% and a False Positive Rate at 95% True Positive Rate
(FPR95) of 83.3%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 58.4 / 88.8 68.7 / 76.8 80.6 / 55.2 86.1 / 42.4 90.6 / 29.8 76.9 / 58.6
Shot Noise 54.9 / 91.8 59.8 / 87.1 73.4 / 69.2 79.7 / 58.6 88.5 / 38.5 71.3 / 69.0

Speckle Noise 55.0 / 91.8 63.7 / 83.7 69.4 / 78.1 80.5 / 63.2 89.2 / 45.0 71.6 / 72.3
Impulse Noise 66.4 / 81.3 80.3 / 60.0 89.4 / 37.4 97.6 / 9.8 99.5 / 1.8 86.7 / 38.1

Defocus Blur 45.1 / 96.1 38.5 / 96.7 33.8 / 97.4 31.2 / 97.7 27.7 / 97.9 35.2 / 97.2
Gaussian Blur 45.5 / 95.9 34.0 / 97.4 30.7 / 97.7 28.2 / 98.0 25.7 / 98.1 32.8 / 97.4

Glass Blur 57.2 / 93.0 55.10 / 94.1 46.11 / 95.6 60.0 / 92.7 50.2 / 94.6 53.7 / 94.0
Motion Blur 38.1 / 96.7 33.6 / 97.4 30.8 / 97.7 30.8 / 97.7 28.8 / 97.8 32.4 / 97.5

Zoom Blur 35.5 / 97.2 33.2 / 97.4 31.5 / 97.5 30.0 / 97.6 28.2 / 97.7 31.7 / 97.5
Snow 68.0 / 79.4 94.2 / 21.2 96.7 / 12.9 99.8 / 0.8 100.0 / 0.0 91.7 / 22.9

Fog 38.9 / 97.0 43.8 / 94.9 49.9 / 92.7 52.7 / 90.3 55.2 / 86.8 48.1 / 92.2
Brightness 62.6 / 86.2 85.6 / 47.9 97.8 / 8.7 99.8 / 0.8 100.0 / 0.0 89.2 / 28.7

Contrast 34.1 / 97.7 38.3 / 96.7 43.5 / 96.3 48.3 / 95.7 50.3 / 95.3 42.9 / 96.3
Elastic Transform 42.2 / 96.4 39.9 / 96.5 36.1 / 97.1 36.1 / 96.9 38.0 / 96.7 38.5 / 96.7

Pixelate 48.7 / 95.2 48.0 / 95.2 47.8 / 95.6 47.5 / 95.7 45.1 / 95.8 47.4 / 95.5
JPEG Compression 49.7 / 95.2 48.7 / 95.5 48.5 / 95.4 48.0 / 95.6 47.7 / 95.3 48.5 / 95.4

Spatter 55.2 / 91.4 63.2 / 82.5 74.8 / 66.1 66.9 / 84.3 75.7 / 77.0 67.2 / 80.0
Saturate 65.0 / 80.5 72.6 / 70.6 63.3 / 88.1 90.7 / 41.8 98.9 / 5.3 78.1 / 57.3

Frost 97.9 / 7.8 100.0 / 0.2 100.0 / 0.1 99.9 / 0.3 99.7 / 1.2 99.5 / 1.9

Table D.5 The performance of the AVAE model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using MSE
+ KL-divergence + Adversarial as metric. The model achieves a mean Area Under the Receiver
Operating Characteristic (AUROC) of 60.2% and a False Positive Rate at 95% True Positive Rate
(FPR95) of 73.1%.
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Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 11.78 / 99.4 11.76 / 99.06 10.31 / 98.96 10.12 / 98.9 10.32 / 98.98 10.86 / 99.06
Shot Noise 13.26 / 99.62 10.25 / 99.54 12.32 / 98.8 21.2 / 96.8 80.4 / 34.66 27.49 / 85.88

Speckle Noise 14.19 / 99.54 8.76 / 99.66 7.42 / 99.74 5.68 / 99.82 5.34 / 99.82 8.28 / 99.72
Impulse Noise 82.32 / 54.02 91.32 / 26.3 94.41 / 15.58 96.6 / 8.44 97.25 / 6.08 92.38 / 22.08

Defocus Blur 54.86 / 91.56 60.7 / 88.62 66.93 / 82.18 70.74 / 75.0 78.47 / 58.0 66.34 / 79.07
Gaussian Blur 55.4 / 91.26 66.78 / 82.36 70.56 / 75.56 73.89 / 69.8 78.93 / 56.84 69.11 / 75.16

Glass Blur 29.79 / 96.54 28.62 / 97.42 22.86 / 98.56 46.11 / 89.8 26.81 / 97.32 30.84 / 95.93
Motion Blur 58.69 / 90.22 63.21 / 86.7 67.24 / 82.36 66.73 / 84.4 69.38 / 81.08 65.05 / 84.95

Zoom Blur 61.45 / 87.6 65.43 / 82.92 67.54 / 79.86 69.11 / 77.4 71.03 / 74.16 66.91 / 80.39
Snow 53.74 / 92.08 50.7 / 93.08 56.26 / 89.42 56.2 / 89.48 56.5 / 91.08 54.68 / 91.03

Fog 51.45 / 91.84 57.41 / 85.8 61.76 / 79.46 63.38 / 75.6 63.97 / 70.48 59.6 / 80.64
Brightness 49.75 / 94.9 51.09 / 94.5 53.06 / 93.46 56.62 / 91.64 63.58 / 87.32 54.82 / 92.36

Contrast 59.6 / 86.84 75.93 / 62.96 81.8 / 49.1 88.51 / 33.06 96.23 / 8.96 80.41 / 48.18
Elastic Transform 58.2 / 89.46 68.92 / 77.98 66.32 / 79.52 57.31 / 85.66 45.73 / 91.22 59.3 / 84.77

Pixelate 88.99 / 25.18 96.71 / 5.32 97.78 / 3.4 99.0 / 1.36 99.96 / 0.16 96.49 / 7.08
JPEG Compression 59.64 / 92.2 70.8 / 82.96 74.59 / 77.98 78.17 / 68.92 83.57 / 56.64 73.35 / 75.74

Spatter 54.71 / 91.9 60.38 / 88.06 60.86 / 85.94 61.72 / 86.26 67.53 / 82.96 61.04 / 87.02
Saturate 72.83 / 78.02 94.09 / 15.04 53.79 / 94.44 72.87 / 78.72 83.32 / 52.06 75.38 / 63.66

Frost 37.52 / 97.7 38.83 / 97.06 35.33 / 96.78 33.43 / 96.82 30.43 / 96.08 35.11 / 96.89

Table D.6 The performance of the VAE FRL model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using Cross
Entroy + KL-divergence - Input Complexity as metric. The model achieves a mean Area Under
the Receiver Operating Characteristic (AUROC) of 57.2% and a False Positive Rate at 95% True
Positive Rate (FPR95) of 76.3%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0
Shot Noise 99.9 / 0.0 99.96 / 0.0 99.99 / 0.0 100.0 / 0.0 100.0 / 0.0 99.97 / 0.0

Speckle Noise 99.73 / 0.1 99.86 / 0.0 99.89 / 0.0 99.93 / 0.0 99.95 / 0.0 99.87 / 0.02
Impulse Noise 99.46 / 2.4 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 99.89 / 0.48

Defocus Blur 44.17 / 95.7 31.83 / 97.0 20.95 / 98.1 17.69 / 98.6 9.31 / 99.0 24.79 / 97.68
Gaussian Blur 44.32 / 95.7 21.34 / 98.0 14.15 / 98.6 9.75 / 99.0 5.21 / 99.3 18.95 / 98.12

Glass Blur 87.80 / 65.4 84.70 / 77.3 79.33 / 83.9 87.56 / 69.9 82.84 / 78.1 84.45 / 74.92
Motion Blur 34.23 / 96.5 26.82 / 97.1 21.77 / 97.7 21.72 / 97.5 18.18 / 98.4 24.54 / 97.44

Zoom Blur 27.71 / 97.1 21.09 / 97.8 17.25 / 98.6 14.45 / 98.6 11.53 / 98.6 18.41 / 98.14
Snow 62.99 / 88.6 74.97 / 80.0 71.98 / 81.7 70.85 / 87.0 71.06 / 90.9 70.37 / 85.64

Fog 44.69 / 95.0 33.72 / 96.1 27.79 / 96.6 24.17 / 96.5 22.13 / 95.2 30.5 / 95.88
Brightness 57.86 / 93.6 63.6 / 91.3 67.67 / 89.8 71.17 / 88.7 73.61 / 88.2 66.78 / 90.32

Contrast 39.17 / 95.6 20.93 / 98.6 14.86 / 98.7 8.79 / 99.3 2.23 / 99.8 17.2 / 98.4
Elastic Transform 38.87 / 95.8 34.2 / 96.8 27.75 / 97.1 36.17 / 96.5 51.48 / 93.9 37.69 / 96.02

Pixelate 57.09 / 93.6 62.0 / 92.3 63.52 / 91.4 67.16 / 90.3 67.01 / 90.8 63.36 / 91.68
JPEG Compression 49.32 / 90.9 44.23 / 93.8 42.04 / 94.5 39.94 / 95.7 36.21 / 96.2 42.35 / 94.22

Spatter 68.03 / 84.3 81.11 / 64.5 88.64 / 39.6 75.23 / 70.5 88.36 / 39.6 80.27 / 59.7
Saturate 23.9 / 97.4 12.14 / 98.7 69.4 / 88.2 88.04 / 52.1 92.2 / 42.8 57.14 / 75.84

Frost 73.96 / 78.0 79.53 / 79.0 82.89 / 66.1 83.17 / 60.2 84.26 / 48.2 80.76 / 66.3

Table D.7 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using log-
likelihood as metric. The model achieves a mean Area Under the Receiver Operating Characteristic
(AUROC) of 58.8% and a False Positive Rate at 95% True Positive Rate (FPR95) of 69.5%.
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D.3. Detailed results on CIFAR10 vs. CIFAR10-C

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 0.01 / 100.0 0.01 / 100.0 0.21 / 100.0 0.18 / 100.0 0.47 / 100.0 0.18 / 100.0
Shot Noise 0.45 / 100.0 0.39 / 100.0 0.33 / 100.0 0.39 / 100.0 0.73 / 100.0 0.46 / 100.0

Speckle Noise 0.74 / 100.0 0.61 / 100.0 0.58 / 100.0 0.79 / 100.0 1.77 / 100.0 0.9 / 100.0
Impulse Noise 13.31 / 99.1 10.99 / 100.0 12.43 / 100.0 19.25 / 100.0 29.25 / 99.8 17.05 / 99.78

Defocus Blur 55.71 / 92.0 60.23 / 83.9 65.64 / 73.1 72.44 / 59.5 80.08 / 45.2 66.82 / 70.74
Gaussian Blur 55.44 / 92.9 65.11 / 74.9 71.07 / 62.5 76.51 / 53.4 85.53 / 36.6 70.73 / 64.06

Glass Blur 14.78 / 100.0 17.24 / 99.8 19.79 / 99.0 14.75 / 100.0 16.81 / 99.5 16.67 / 99.66
Motion Blur 59.17 / 86.5 62.82 / 80.7 66.05 / 78.2 66.08 / 76.0 68.87 / 71.4 64.6 / 78.56

Zoom Blur 62.07 / 80.0 66.15 / 72.1 69.17 / 66.9 71.99 / 61.1 75.62 / 54.7 69.0 / 66.96
Snow 46.25 / 94.8 40.12 / 96.3 40.56 / 96.2 39.72 / 95.8 39.95 / 96.2 41.32 / 95.86

Fog 58.87 / 92.4 62.46 / 88.3 64.97 / 83.6 66.07 / 80.0 69.08 / 74.1 64.29 / 83.68
Brightness 49.3 / 95.8 44.74 / 96.7 39.64 / 97.0 35.2 / 97.7 29.03 / 98.6 39.58 / 97.16

Contrast 60.38 / 90.6 66.07 / 81.4 71.51 / 73.0 77.7 / 62.3 91.2 / 30.3 73.37 / 67.52
Elastic Transform 53.64 / 89.7 55.91 / 86.1 59.33 / 79.9 48.9 / 86.7 34.59 / 94.0 50.47 / 87.28

Pixelate 41.61 / 96.1 36.16 / 96.8 33.18 / 96.8 29.0 / 97.3 26.97 / 97.3 33.38 / 96.86
JPEG Compression 83.05 / 54.0 84.49 / 47.8 85.03 / 47.2 84.93 / 44.4 84.12 / 47.0 84.32 / 48.08

Spatter 33.34 / 96.8 20.16 / 97.6 12.59 / 98.0 26.44 / 97.3 13.98 / 98.3 21.3 / 97.6
Saturate 71.75 / 68.0 92.63 / 24.3 45.27 / 97.6 17.6 / 99.8 9.36 / 100.0 47.32 / 77.94

Frost 36.11 / 97.3 29.7 / 98.7 25.6 / 99.8 26.3 / 99.5 25.86 / 99.7 28.71 / 99.0

Table D.8 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using typ-
icality as metric. The model achieves a mean Area Under the Receiver Operating Characteristic
(AUROC) of 41.6% and a False Positive Rate at 95% True Positive Rate (FPR95) of 85.8%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 99.99 / 0.1 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.02
Shot Noise 99.62 / 0.5 99.82 / 0.1 99.94 / 0.0 99.96 / 0.0 99.96 / 0.0 99.86 / 0.12

Speckle Noise 99.39 / 1.5 99.76 / 0.3 99.81 / 0.1 99.85 / 0.1 99.89 / 0.0 99.74 / 0.4
Impulse Noise 95.95 / 13.1 99.77 / 1.0 99.98 / 0.1 100.0 / 0.0 100.0 / 0.0 99.14 / 2.84

Defocus Blur 48.67 / 94.8 47.99 / 95.7 53.14 / 88.1 57.01 / 92.1 71.64 / 73.1 55.69 / 88.76
Gaussian Blur 48.74 / 95.2 52.7 / 88.6 60.77 / 81.1 69.22 / 72.4 81.95 / 44.6 62.68 / 76.38

Glass Blur 83.37 / 68.1 80.56 / 73.3 75.60 / 78.3 83.52 / 66.2 79.06 / 74.8 80.42 / 72.14
Motion Blur 46.99 / 95.8 49.89 / 94.2 53.37 / 89.9 53.72 / 89.9 57.48 / 87.1 52.29 / 91.38

Zoom Blur 48.54 / 92.9 52.78 / 89.9 56.63 / 86.0 60.52 / 84.1 66.06 / 79.1 56.91 / 86.4
Snow 51.08 / 92.5 60.15 / 82.8 57.14 / 87.0 58.05 / 89.9 60.55 / 85.5 57.39 / 87.54

Fog 49.6 / 94.2 50.45 / 94.8 52.6 / 93.4 53.88 / 88.3 54.22 / 90.5 52.15 / 92.24
Brightness 53.11 / 91.8 56.2 / 89.7 59.07 / 89.6 62.44 / 89.6 67.19 / 92.5 59.6 / 90.64

Contrast 49.61 / 94.3 57.67 / 84.6 64.43 / 77.4 73.96 / 65.3 90.95 / 29.6 67.32 / 70.24
Elastic Transform 46.48 / 94.9 46.47 / 94.3 47.27 / 93.5 43.97 / 92.8 50.95 / 90.2 47.03 / 93.14

Pixelate 51.88 / 95.4 55.49 / 94.3 57.67 / 94.0 61.57 / 92.1 62.39 / 91.2 57.8 / 93.4
JPEG Compression 57.41 / 65.7 57.93 / 66.3 58.43 / 68.1 58.41 / 72.2 58.23 / 75.6 58.08 / 69.58

Spatter 54.38 / 95.9 70.71 / 81.6 81.41 / 58.0 60.72 / 92.2 78.86 / 64.6 69.22 / 78.46
Saturate 54.15 / 94.0 80.13 / 62.6 60.02 / 82.5 79.14 / 75.6 87.57 / 58.7 72.2 / 74.68

Frost 60.71 / 86.2 69.18 / 80.3 71.64 / 78.7 70.37 / 78.7 69.45 / 77.3 68.27 / 80.24

Table D.9 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using the
normalized score distance as metric. The model achieves a mean Area Under the Receiver Op-
erating Characteristic (AUROC) of 69.25% and a False Positive Rate at 95% True Positive Rate
(FPR95) of 65.57%.
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Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0
Shot Noise 99.97 / 0.03 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 99.99 / 0.01

Speckle Noise 99.87 / 0.46 99.98 / 0.0 99.99 / 0.0 100.0 / 0.0 100.0 / 0.0 99.97 / 0.09
Impulse Noise 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0 100.0 / 0.0

Defocus Blur 41.76 / 96.56 26.48 / 98.66 15.67 / 99.39 12.81 / 99.49 6.67 / 99.73 20.68 / 98.77
Gaussian Blur 42.08 / 96.55 16.35 / 99.35 10.53 / 99.64 7.43 / 99.72 4.36 / 99.79 16.15 / 99.01

Glass Blur 94.10 / 26.6 92.71 / 32.9 85.63 / 53.3 95.30 / 22.3 90.04 / 41.4 91.56 / 35.3
Motion Blur 28.51 / 98.22 20.43 / 99.04 15.41 / 99.35 15.39 / 99.34 12.06 / 99.52 18.36 / 99.09

Zoom Blur 21.57 / 99.06 15.85 / 99.3 12.66 / 99.47 10.36 / 99.54 8.13 / 99.67 13.71 / 99.41
Snow 66.81 / 76.76 78.15 / 57.68 75.76 / 62.43 74.43 / 66.1 77.02 / 62.06 74.43 / 65.01

Fog 37.97 / 96.31 22.81 / 98.66 15.71 / 99.16 11.1 / 99.39 7.29 / 99.4 18.98 / 98.58
Brightness 56.99 / 91.95 63.15 / 88.38 68.39 / 84.34 73.15 / 78.64 78.57 / 72.78 68.05 / 83.22

Contrast 31.23 / 97.77 11.0 / 99.63 6.3 / 99.73 2.84 / 99.84 0.51 / 99.98 10.38 / 99.39
Elastic Transform 34.78 / 97.95 29.44 / 98.41 22.61 / 98.92 29.91 / 98.15 46.57 / 94.68 32.66 / 97.62

Pixelate 58.57 / 91.1 63.7 / 87.87 65.79 / 86.0 70.44 / 81.05 74.14 / 75.92 66.53 / 84.39
JPEG Compression 52.06 / 90.7 48.68 / 92.9 48.04 / 93.33 46.66 / 94.63 44.78 / 95.83 48.04 / 93.48

Spatter 77.96 / 56.4 90.66 / 25.05 92.64 / 18.55 90.29 / 33.44 97.05 / 11.91 89.72 / 29.07
Saturate 22.04 / 98.92 16.43 / 99.45 71.69 / 79.1 91.61 / 33.98 96.68 / 13.23 59.69 / 64.94

Frost 70.48 / 72.15 79.48 / 58.54 82.12 / 52.39 79.68 / 56.79 78.54 / 57.5 78.06 / 59.47

Table D.10 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated
using log-likelihood as metric. The model achieves a mean Area Under the Receiver Operating
Characteristic (AUROC) of 58.3% and a False Positive Rate at 95% True Positive Rate (FPR95) of
63.5%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 6.99 / 100.0 1.75 / 100.0 0.44 / 100.0 0.19 / 100.0 0.08 / 100.0 1.89 / 100.0
Shot Noise 13.91 / 99.99 7.24 / 100.0 1.54 / 100.0 0.86 / 100.0 0.36 / 100.0 4.78 / 100.0

Speckle Noise 14.62 / 99.99 5.91 / 100.0 3.92 / 100.0 1.79 / 100.0 0.88 / 100.0 5.42 / 100.0
Impulse Noise 1.72 / 100.0 0.25 / 100.0 0.09 / 100.0 0.03 / 100.0 0.03 / 100.0 0.42 / 100.0

Defocus Blur 56.28 / 91.03 67.29 / 77.35 75.52 / 58.82 81.35 / 48.12 87.62 / 33.84 73.61 / 61.83
Gaussian Blur 56.14 / 91.32 75.85 / 58.06 81.0 / 44.39 84.6 / 36.37 89.52 / 27.93 77.42 / 51.61

Glass Blur 31.48 / 99.64 33.31 / 99.53 40.55 / 98.72 27.37 / 99.75 35.57 / 99.28 33.66 / 99.38
Motion Blur 66.94 / 78.89 73.39 / 67.27 77.53 / 57.47 77.39 / 56.9 80.2 / 50.71 75.09 / 62.25

Zoom Blur 75.41 / 64.55 77.96 / 56.4 81.04 / 48.43 82.35 / 44.68 84.65 / 38.59 80.28 / 50.53
Snow 40.84 / 97.16 34.39 / 98.25 34.76 / 98.08 35.47 / 97.95 36.02 / 98.05 36.3 / 97.9

Fog 59.09 / 88.58 69.74 / 74.13 74.34 / 62.76 77.76 / 54.6 81.51 / 45.02 72.49 / 65.02
Brightness 46.11 / 96.49 42.79 / 97.53 39.77 / 98.37 36.64 / 98.91 32.23 / 99.42 39.51 / 98.14

Contrast 63.27 / 83.41 77.58 / 55.23 81.85 / 43.87 85.81 / 34.14 91.13 / 23.89 79.93 / 48.11
Elastic Transform 62.73 / 85.85 66.2 / 80.71 71.06 / 71.71 65.88 / 79.12 55.36 / 90.91 64.25 / 81.66

Pixelate 49.57 / 96.24 50.82 / 96.96 50.71 / 97.01 53.34 / 97.24 58.73 / 96.77 52.63 / 96.84
JPEG Compression 53.62 / 93.49 56.54 / 92.86 58.53 / 92.25 59.89 / 91.32 61.29 / 90.17 57.97 / 92.02

Spatter 40.06 / 97.67 30.67 / 98.94 27.04 / 99.36 24.72 / 99.29 16.57 / 99.89 27.81 / 99.03
Saturate 64.44 / 77.58 66.78 / 72.5 36.82 / 99.02 21.56 / 99.89 13.69 / 100.0 40.66 / 89.8

Frost 41.35 / 97.29 38.0 / 98.22 39.38 / 98.04 41.29 / 97.43 43.61 / 96.68 40.73 / 97.53

Table D.11 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated using
typicality as metric. The model achieves a mean Area Under the Receiver Operating Characteristic
(AUROC) of 45.5% and a False Positive Rate at 95% True Positive Rate (FPR95) of 83.8%.
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D.3. Detailed results on CIFAR10 vs. CIFAR10-C

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Gaussian Noise 99.46 / 0.63 99.65 / 0.4 99.79 / 0.25 99.81 / 0.2 99.82 / 0.19 99.71 / 0.33
Shot Noise 99.19 / 1.16 99.46 / 0.71 99.69 / 0.43 99.76 / 0.39 99.81 / 0.25 99.58 / 0.59

Speckle Noise 98.96 / 2.07 99.48 / 0.78 99.59 / 0.68 99.72 / 0.47 99.79 / 0.39 99.51 / 0.88
Impulse Noise 99.68 / 0.5 99.84 / 0.19 99.88 / 0.15 99.91 / 0.12 99.92 / 0.09 99.85 / 0.21

Defocus Blur 50.33 / 94.96 58.69 / 92.74 70.05 / 84.46 75.37 / 78.97 85.71 / 52.89 68.03 / 80.8
Gaussian Blur 50.14 / 95.3 69.37 / 85.8 77.29 / 73.98 82.67 / 61.39 89.41 / 36.32 73.78 / 70.56

Glass Blur 89.41 / 45.08 87.57 / 53.53 77.47 / 74.20 91.13 / 38.94 83.31 / 64.63 85.78 / 55.28
Motion Blur 57.66 / 93.61 65.53 / 89.88 72.16 / 83.91 72.05 / 84.16 76.56 / 75.4 68.79 / 85.39

Zoom Blur 64.69 / 91.29 70.9 / 85.13 75.56 / 78.26 78.72 / 71.08 82.34 / 63.09 74.44 / 77.77
Snow 50.58 / 95.61 61.29 / 91.65 58.24 / 93.14 57.31 / 93.96 60.98 / 92.24 57.68 / 93.32

Fog 51.21 / 94.85 62.74 / 90.19 70.43 / 83.68 76.32 / 74.28 81.99 / 56.85 68.54 / 79.97
Brightness 50.58 / 95.27 53.04 / 95.21 56.92 / 94.54 61.02 / 93.45 68.04 / 91.46 57.92 / 93.99

Contrast 55.32 / 93.67 76.67 / 75.78 83.86 / 54.76 90.12 / 29.31 95.89 / 10.34 80.37 / 52.77
Elastic Transform 53.65 / 94.88 56.87 / 94.16 62.39 / 91.69 55.03 / 94.55 47.27 / 96.18 55.04 / 94.29

Pixelate 52.09 / 95.21 54.97 / 95.39 56.66 / 95.11 61.11 / 94.28 66.07 / 92.41 58.18 / 94.48
JPEG Compression 46.36 / 96.46 46.7 / 96.45 47.28 / 96.54 47.75 / 96.6 48.96 / 96.57 47.41 / 96.52

Spatter 60.21 / 93.94 81.88 / 52.79 85.73 / 38.68 80.65 / 71.55 93.5 / 23.28 80.39 / 56.05
Saturate 60.09 / 89.53 66.52 / 84.43 59.65 / 94.4 85.27 / 62.34 93.93 / 24.4 73.09 / 71.02

Frost 53.51 / 95.45 64.2 / 91.5 67.86 / 89.29 64.31 / 91.19 62.17 / 92.49 62.41 / 91.98

Table D.12 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between CIFAR10 and CIFAR10-C datasets is evaluated. The model is evaluated
using normalized score distance as metric. The model achieves a mean Area Under the Receiver
Operating Characteristic (AUROC) of 74.9% and a False Positive Rate at 95% True Positive Rate
(FPR95) of 61.7%.

Model VAE AVAE VAE DDPM DDPM GLOW GLOW GLOW CovFlow CovFlow CovFlow
Evaluation ALL ALL FLR T150 T20 LL Typ NSD LL Typ NSD

Gaussian Noise 85.7 76.9 10.9 64.6 92.8 100.0 0.2 100.0 100.0 1.9 99.7
Shot Noise 79.2 71.3 27.5 61.3 87.9 100.0 0.5 99.9 100.0 4.8 99.6

Speckle Noise 79.3 71.6 8.2 61.3 85.3 99.9 0.9 99.7 100.0 5.4 99.5
Impulse Noise 92.8 86.6 92.4 77.0 97.3 99.9 17.0 99.1 100.0 0.4 99.8

Defocus Blur 26.6 35.3 66.3 70.4 63.7 24.8 66.8 55.7 20.7 73.6 68.0
Gaussian Blur 22.5 32.8 69.1 78.5 71.0 19.0 70.7 62.7 16.2 77.4 73.8

Glass Blur 55.5 53.7 30.8 64.9 73.1 84.4 16.7 80.4 91.6 33.7 85.8
Motion Blur 21.6 32.4 65.1 78.6 68.7 24.5 64.6 52.3 18.4 75.1 68.8

Zoom Blur 21.3 31.7 66.9 80.0 69.8 18.4 69.0 56.9 13.7 80.3 74.4
Snow 66.1 91.7 54.7 50.1 61.2 70.4 41.3 57.4 74.4 36.3 57.7

Fog 14.0 48.1 59.6 78.6 70.0 30.5 64.3 52.2 19.0 72.5 68.5
Brightness 56.1 89.2 54.8 47.4 51.5 66.8 39.6 59.6 68.0 39.5 57.9

Contrast 6.3 42.9 80.4 50.4 47.2 17.2 73.4 67.3 10.4 79.9 80.4
Elastic Transform 31.2 38.5 59.3 58.8 52.5 37.7 50.5 47.0 32.7 64.2 55.0

Pixelate 46.7 47.4 96.5 56.5 55.4 63.4 33.4 57.8 66.5 52.6 58.2
JPEG Compression 48.0 48.5 73.3 57.4 56.4 42.4 84.3 58.1 48.0 58.0 47.4

Spatter 72.1 67.2 61.0 59.6 67.6 80.3 21.3 69.2 89.7 27.8 80.4
Saturate 57.9 78.1 75.3 52.2 56.6 57.1 47.3 72.2 59.7 40.7 73.1

Frost 47.2 99.5 35.1 53.8 60.3 80.8 28.7 68.3 78.1 40.7 62.4

Average 48.9 60.2 57.2 63.1 67.5 57.7 41.6 69.3 58.3 45.5 74.9

Table D.13 Comparison of the performance (AUROC) of all the employed models at detecting every
CIFAR10(-C) OOD degredation type.
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D.4 Detailed results on ImageNet200 vs. ImageNet200-C
The following section depicts detailed results obtained with various models on our
experiments with ID ImageNet200 and ImageNet200-C as OOD. The results are
depicted in order of presentation: DDPM T20-LPIPS+MSE (D.14), GLOW-LL (Ta-
ble D.15), GLOW-Typicality (Table D.16), GLOW-NSD (Table D.9), CovariateFlow-
LL (Table D.18), CovariateFlow-Typicality (Table D.19) and CovariateFlow-NSD (Ta-
ble D.20).

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 39.0 / 94.3 35.45 / 95.0 33.15 / 96.3 30.04 / 97.2 28.51 / 97.3 33.23 / 96.02
Contrast 59.52 / 86.7 64.78 / 85.7 73.87 / 80.5 85.18 / 63.3 89.73 / 51.5 74.62 / 73.54

Defocus Blur 57.46 / 91.8 67.45 / 87.1 82.33 / 72.9 96.75 / 16.8 98.77 / 3.7 80.55 / 54.46
Elastic Transform 49.89 / 92.1 49.37 / 93.8 54.55 / 92.1 52.63 / 92.1 50.93 / 93.6 51.47 / 92.74

Fog 59.22 / 85.7 70.98 / 79.8 81.35 / 64.7 91.6 / 43.0 95.54 / 25.1 79.74 / 59.66
Frost 34.42 / 96.2 40.97 / 96.2 48.61 / 93.0 52.6 / 92.1 57.38 / 89.6 46.8 / 93.42

Gaussian Noise 34.87 / 96.5 74.38 / 63.2 91.73 / 28.0 96.13 / 14.2 97.71 / 6.9 78.96 / 41.76
Glass Blur 56.65 / 87.2 49.07 / 92.5 50.19 / 93.2 59.12 / 90.2 82.11 / 72.6 59.43 / 87.14

Impulse Noise 49.4 / 88.2 66.25 / 75.1 89.9 / 30.0 95.79 / 14.9 98.0 / 5.4 79.87 / 42.72
JPEG Compression 43.2 / 93.9 41.98 / 94.8 47.62 / 93.6 47.03 / 92.8 52.38 / 92.1 46.44 / 93.44

Motion Blur 54.12 / 92.1 59.06 / 88.2 70.23 / 83.8 76.9 / 77.9 82.41 / 66.7 68.54 / 81.74
Pixelate 41.02 / 94.6 42.57 / 94.7 49.44 / 91.9 52.49 / 89.9 54.62 / 89.3 48.03 / 92.08

Shot Noise 40.79 / 94.2 62.07 / 81.1 80.72 / 60.5 88.17 / 48.3 94.85 / 20.5 73.32 / 60.92
Snow 45.58 / 94.6 58.46 / 90.2 44.76 / 97.2 38.28 / 97.3 39.68 / 97.2 45.35 / 95.3

Zoom Blur 64.0 / 87.5 71.22 / 81.5 77.86 / 73.2 83.17 / 62.9 87.45 / 55.1 76.74 / 72.04

Table D.14 The performance of the DDPM model in detecting out-of-distribution (OOD) covariate
shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evaluated
using T20-LPIPS+MSE as metric. The model achieves a mean Area Under the Receiver Operating
Characteristic (AUROC) of 62.87% and a False Positive Rate at 95% True Positive Rate (FPR95)
of 75.80%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 38.03 / 96.5 42.45 / 95.9 45.58 / 95.6 47.64 / 95.9 48.21 / 96.5 44.38 / 96.08
Contrast 5.8 / 99.8 3.0 / 99.8 1.13 / 99.9 0.15 / 100.0 0.01 / 100.0 2.02 / 99.9

Defocus Blur 17.3 / 98.1 14.11 / 98.2 9.92 / 99.3 5.12 / 99.7 4.0 / 99.8 10.09 / 99.02
Elastic Transform 23.8 / 98.0 22.13 / 98.0 18.54 / 98.1 19.07 / 98.1 21.5 / 97.8 21.01 / 98.0

Fog 18.73 / 98.1 12.86 / 99.3 9.19 / 99.6 5.73 / 99.8 4.0 / 99.8 10.1 / 99.32
Frost 41.85 / 93.7 43.38 / 92.1 42.83 / 91.5 43.73 / 90.2 44.57 / 88.6 43.27 / 91.22

Gaussian Noise 65.57 / 65.5 97.55 / 6.9 99.71 / 0.8 99.96 / 0.2 99.99 / 0.0 92.56 / 14.68
Glass Blur 50.16 / 93.8 23.86 / 97.5 15.38 / 98.1 11.67 / 98.2 6.53 / 99.5 21.52 / 97.42

Impulse Noise 69.23 / 64.7 94.31 / 16.7 99.73 / 0.5 99.98 / 0.1 100.0 / 0.0 92.65 / 16.4
JPEG Compression 17.45 / 98.1 17.49 / 98.2 14.21 / 98.8 12.64 / 99.4 9.05 / 99.7 14.17 / 98.84

Motion Blur 21.88 / 98.0 17.4 / 98.1 14.35 / 98.2 12.19 / 98.6 10.58 / 98.9 15.28 / 98.36
Pixelate 32.68 / 97.0 32.34 / 96.9 32.99 / 96.6 30.62 / 97.0 28.46 / 97.3 31.42 / 96.96

Shot Noise 66.1 / 71.7 89.03 / 43.9 96.59 / 15.0 98.41 / 3.0 99.34 / 0.8 89.89 / 26.88
Snow 42.62 / 93.6 54.38 / 88.7 44.96 / 93.8 40.73 / 96.0 36.27 / 97.3 43.79 / 93.88

Zoom Blur 16.06 / 98.1 12.24 / 98.5 10.42 / 98.9 8.67 / 99.4 7.44 / 99.5 10.97 / 98.88

Table D.15 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evaluated
using log-likelihood as metric. The model achieves a mean Area Under the Receiver Operating
Characteristic (AUROC) of 36.21% and a False Positive Rate at 95% True Positive Rate (FPR95)
of 81.7%.
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D.4. Detailed results on ImageNet200 vs. ImageNet200-C

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 43.64 / 96.0 37.45 / 97.8 33.11 / 98.6 29.8 / 99.0 28.06 / 99.1 34.41 / 98.1
Contrast 81.03 / 48.7 86.93 / 36.3 92.61 / 22.5 97.37 / 7.0 99.17 / 3.4 91.42 / 23.58

Defocus Blur 59.32 / 79.3 61.55 / 74.4 66.0 / 66.8 73.11 / 53.0 75.83 / 48.4 67.16 / 64.38
Elastic Transform 56.73 / 85.4 57.43 / 83.7 59.26 / 79.8 58.04 / 80.6 56.33 / 83.0 57.56 / 82.5

Fog 65.07 / 73.1 71.91 / 62.9 76.93 / 54.3 82.61 / 45.9 86.36 / 36.5 76.58 / 54.54
Frost 44.91 / 95.0 46.15 / 93.9 48.82 / 91.4 49.75 / 90.5 50.83 / 90.1 48.09 / 92.18

Gaussian Noise 27.09 / 97.4 4.3 / 99.2 0.53 / 99.8 0.16 / 100.0 0.01 / 100.0 6.42 / 99.28
Glass Blur 45.74 / 94.6 57.55 / 80.8 61.94 / 72.1 64.63 / 67.6 70.64 / 56.9 60.1 / 74.4

Impulse Noise 22.29 / 98.1 4.99 / 99.2 0.36 / 100.0 0.07 / 100.0 0.01 / 100.0 5.54 / 99.46
JPEG Compression 64.51 / 79.8 65.75 / 80.9 69.9 / 74.4 73.9 / 70.8 81.06 / 58.7 71.02 / 72.92

Motion Blur 56.63 / 83.9 59.15 / 79.1 61.21 / 74.4 63.11 / 71.6 64.74 / 69.4 60.97 / 75.68
Pixelate 52.9 / 90.2 53.72 / 89.1 53.02 / 89.4 55.48 / 84.7 60.41 / 78.5 55.11 / 86.38

Shot Noise 27.68 / 97.4 13.79 / 99.0 5.15 / 99.6 2.85 / 99.8 1.28 / 100.0 10.15 / 99.16
Snow 51.33 / 92.2 47.83 / 94.3 54.25 / 91.4 57.88 / 90.2 63.25 / 85.8 54.91 / 90.78

Zoom Blur 60.25 / 78.2 63.37 / 71.6 65.24 / 68.4 67.39 / 63.8 69.11 / 61.2 65.07 / 68.64

Table D.16 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evaluated using
typicality as metric. The model achieves a mean Area Under the Receiver Operating Characteristic
(AUROC) of 51.0% and a False Positive Rate at 95% True Positive Rate (FPR95) of 78.8%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 47.03 / 88.7 49.81 / 86.4 53.01 / 84.6 56.25 / 81.5 58.86 / 78.5 52.99 / 83.94
Contrast 79.98 / 59.4 88.76 / 41.1 95.46 / 15.6 99.2 / 4.0 99.92 / 0.4 92.66 / 24.1

Defocus Blur 55.14 / 76.4 59.14 / 70.9 65.89 / 61.7 76.95 / 46.4 80.72 / 41.3 67.57 / 59.34
Elastic Transform 49.51 / 85.9 50.52 / 84.5 53.73 / 79.7 52.89 / 79.5 50.35 / 82.4 51.4 / 82.4

Fog 54.47 / 86.2 63.48 / 80.7 71.4 / 72.8 80.79 / 59.6 86.43 / 48.1 71.31 / 69.48
Frost 44.2 / 93.3 42.28 / 95.6 40.22 / 96.2 39.61 / 96.2 39.12 / 95.6 41.09 / 95.38

Gaussian Noise 48.72 / 94.2 90.93 / 17.5 97.51 / 4.3 99.04 / 1.8 99.52 / 0.6 87.14 / 23.68
Glass Blur 47.43 / 95.6 47.72 / 87.0 56.57 / 75.6 62.44 / 66.7 73.02 / 50.5 57.44 / 75.08

Impulse Noise 54.18 / 90.5 87.27 / 26.8 97.76 / 3.9 99.29 / 1.4 99.77 / 0.4 87.65 / 24.6
JPEG Compression 57.84 / 82.5 58.69 / 83.5 63.58 / 78.9 67.34 / 77.7 76.33 / 71.9 64.76 / 78.9

Motion Blur 50.84 / 83.3 55.12 / 77.3 58.97 / 72.4 62.29 / 67.8 65.1 / 64.2 58.46 / 73.0
Pixelate 45.1 / 91.9 44.29 / 92.1 43.55 / 92.0 43.3 / 92.0 42.39 / 94.2 43.73 / 92.44

Shot Noise 51.85 / 92.6 79.07 / 67.4 91.32 / 28.1 95.42 / 12.3 98.25 / 5.0 83.18 / 41.08
Snow 41.77 / 96.6 44.85 / 96.7 42.98 / 97.0 43.99 / 97.1 46.22 / 97.0 43.96 / 96.88

Zoom Blur 56.61 / 74.6 61.92 / 67.7 65.01 / 62.7 68.36 / 58.8 71.01 / 54.6 64.58 / 63.68

Table D.17 The performance of the GLOW model in detecting out-of-distribution (OOD) covariate
shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evaluated
using normalized score distance as metric. The model achieves a mean Area Under the Receiver
Operating Characteristic (AUROC) of 64.5% and a False Positive Rate at 95% True Positive Rate
(FPR95) of 65.6%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 24.8 / 98.6 32.64 / 97.4 40.65 / 96.9 44.85 / 96.9 50.5 / 96.2 38.69 / 97.2
Contrast 0.86 / 100.0 0.35 / 100.0 0.12 / 100.0 0.03 / 100.0 0.02 / 100.0 0.28 / 100.0

Defocus Blur 9.16 / 99.8 7.8 / 99.8 4.63 / 99.9 1.71 / 100.0 1.18 / 100.0 4.9 / 99.9
Elastic Transform 12.46 / 99.7 12.18 / 99.7 9.64 / 99.7 9.73 / 99.7 10.37 / 99.7 10.88 / 99.7

Fog 6.11 / 99.8 2.82 / 100.0 1.48 / 100.0 0.77 / 100.0 0.33 / 100.0 2.3 / 99.96
Frost 23.98 / 98.1 22.32 / 97.6 17.32 / 98.5 16.03 / 98.1 15.8 / 97.9 19.09 / 98.04

Gaussian Noise 29.29 / 95.2 68.86 / 52.8 94.04 / 11.7 98.06 / 3.6 99.46 / 1.6 77.94 / 32.98
Glass Blur 26.39 / 97.8 8.77 / 99.7 4.71 / 99.8 3.11 / 99.9 1.44 / 100.0 8.88 / 99.44

Impulse Noise 42.44 / 88.1 71.39 / 60.7 96.95 / 6.9 99.42 / 1.8 99.99 / 0.1 82.04 / 31.52
JPEG Compression 12.31 / 99.5 15.34 / 99.5 11.5 / 99.7 12.1 / 99.7 10.84 / 99.8 12.42 / 99.64

Motion Blur 11.93 / 99.7 8.59 / 99.7 6.98 / 99.8 5.11 / 99.8 4.29 / 99.9 7.38 / 99.78
Pixelate 17.99 / 99.1 16.25 / 99.1 15.22 / 99.5 14.63 / 99.2 12.65 / 99.4 15.35 / 99.26

Shot Noise 29.97 / 95.2 52.29 / 82.9 80.05 / 50.3 92.4 / 20.7 98.31 / 4.5 70.6 / 50.72
Snow 23.6 / 97.1 30.26 / 94.4 28.19 / 95.5 26.6 / 96.2 23.48 / 97.4 26.43 / 96.12

Zoom Blur 8.49 / 99.8 5.74 / 99.8 4.61 / 99.8 3.86 / 99.8 2.8 / 100.0 5.1 / 99.84

Table D.18 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evalu-
ated using log-likelihood as metric. The model achieves a mean Area Under the Receiver Operating
Characteristic (AUROC) of 25.8% and a False Positive Rate at 95% True Positive Rate (FPR95) of
87.9%.
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Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 63.09 / 83.5 59.09 / 87.7 57.06 / 90.8 56.08 / 93.0 53.79 / 93.6 57.82 / 89.72
Contrast 80.11 / 52.2 82.58 / 46.6 84.46 / 43.7 86.7 / 38.5 87.91 / 38.4 84.35 / 43.88

Defocus Blur 73.57 / 65.0 76.69 / 59.2 77.32 / 56.7 79.52 / 52.1 80.14 / 51.6 77.45 / 56.92
Elastic Transform 70.95 / 76.5 71.3 / 69.2 71.14 / 68.0 71.97 / 66.7 69.81 / 68.8 71.03 / 69.84

Fog 73.8 / 64.2 77.47 / 56.5 78.13 / 54.9 79.93 / 50.5 81.97 / 46.8 78.26 / 54.58
Frost 62.49 / 81.5 61.63 / 81.4 65.72 / 76.1 64.46 / 76.5 66.97 / 72.0 64.25 / 77.5

Gaussian Noise 57.59 / 86.2 37.25 / 95.9 11.56 / 99.4 5.28 / 99.9 2.63 / 100.0 22.86 / 96.28
Glass Blur 57.5 / 84.7 70.68 / 69.2 73.88 / 62.4 75.91 / 58.8 79.3 / 52.9 71.45 / 65.6

Impulse Noise 50.98 / 92.7 37.38 / 96.1 9.52 / 99.7 2.75 / 100.0 0.58 / 100.0 20.24 / 97.7
JPEG Compression 68.64 / 72.4 66.91 / 75.4 70.38 / 70.6 69.92 / 74.2 69.95 / 71.5 69.16 / 72.82

Motion Blur 69.2 / 70.4 73.33 / 65.6 74.94 / 62.2 76.46 / 59.5 76.41 / 60.0 74.07 / 63.54
Pixelate 65.93 / 77.7 68.28 / 75.3 70.48 / 68.9 71.53 / 68.9 72.87 / 66.4 69.82 / 71.44

Shot Noise 56.38 / 83.8 46.32 / 93.2 27.58 / 97.8 15.13 / 99.4 5.62 / 100.0 30.21 / 94.84
Snow 60.07 / 81.9 56.09 / 84.8 57.87 / 83.5 59.16 / 83.5 62.24 / 79.2 59.09 / 82.58

Zoom Blur 74.45 / 61.1 75.93 / 61.7 75.98 / 59.3 76.89 / 59.0 77.85 / 57.1 76.22 / 59.64

Table D.19 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is evalu-
ated using typicality as metric. The model achieves a mean Area Under the Receiver Operating
Characteristic (AUROC) of 61.8% and a False Positive Rate at 95% True Positive Rate (FPR95) of
73.1%.

Severity 1 2 3 4 5 Average
Metric AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓ AUROC↑/ FPR95↓

Brightness 58.65 / 86.1 54.19 / 93.5 53.38 / 93.2 53.62 / 94.2 54.55 / 94.1 54.88 / 92.22
Contrast 87.87 / 23.7 89.66 / 19.9 91.65 / 16.4 93.19 / 14.0 94.38 / 12.0 91.35 / 17.2

Defocus Blur 75.17 / 69.5 76.79 / 63.5 80.82 / 48.0 85.66 / 28.3 87.26 / 24.3 81.14 / 46.72
Elastic Transform 71.4 / 71.1 70.95 / 76.3 72.68 / 72.8 73.58 / 71.4 71.72 / 72.8 72.07 / 72.88

Fog 78.02 / 52.0 83.44 / 36.2 85.75 / 27.8 87.64 / 23.2 89.49 / 19.3 84.87 / 31.7
Frost 57.73 / 87.8 57.58 / 87.6 61.2 / 82.5 63.14 / 76.3 63.24 / 78.7 60.58 / 82.58

Gaussian Noise 51.71 / 91.5 42.24 / 94.7 89.85 / 18.7 95.72 / 7.2 97.91 / 3.6 75.49 / 43.14
Glass Blur 54.51 / 89.5 73.88 / 67.8 79.7 / 46.0 82.48 / 36.7 86.13 / 26.8 75.34 / 53.36

Impulse Noise 44.24 / 94.0 49.66 / 94.9 94.03 / 12.2 97.96 / 3.9 99.33 / 1.0 77.04 / 41.2
JPEG Compression 69.16 / 73.0 66.41 / 82.2 69.87 / 75.2 69.76 / 74.7 71.05 / 75.4 69.25 / 76.1

Motion Blur 70.49 / 77.0 74.58 / 66.4 76.85 / 63.0 79.64 / 53.8 80.66 / 45.2 76.44 / 61.08
Pixelate 64.6 / 82.7 65.71 / 81.4 65.98 / 81.7 67.72 / 83.3 68.87 / 77.1 66.58 / 81.24

Shot Noise 49.73 / 90.8 37.74 / 96.7 66.7 / 83.8 87.36 / 36.0 96.12 / 9.1 67.53 / 63.28
Snow 55.22 / 88.2 48.07 / 90.9 50.33 / 92.4 51.18 / 91.8 54.07 / 90.6 51.77 / 90.78

Zoom Blur 74.91 / 68.0 79.54 / 49.0 80.36 / 46.6 81.94 / 42.2 83.66 / 34.6 80.08 / 48.08

Table D.20 The performance of the CovariateFlow model in detecting out-of-distribution (OOD)
covariate shift between ImageNet200 and ImageNet200-C datasets is evaluated. The model is eval-
uated using normalized score distance as metric. The model achieves a mean Area Under the
Receiver Operating Characteristic (AUROC) of 72.3% and a False Positive Rate at 95% True
Positive Rate (FPR95) of 60.1%.
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D.5. X-Ray dataset details

D.5 X-Ray dataset details
Medical X-ray images, pivotal for diagnostic purposes, contain various noise
sources that can compromise image quality and diagnostic accuracy [294]. Pho-
ton noise, stemming from the probabilistic interaction of X-ray photons with the
detector, leads to pixel value variations and is more pronounced at lower doses,
often modeled as signal-dependent Poisson noise. Electronic noise, including
thermal, quantization, and readout noise, arises from system components, while
scatter noise, due to photon scattering within the patient’s body, degrades contrast
and introduces artifacts. These are often modeled as signal-independent additive
noise. Although manual modeling noise has been attempted [365], a data-driven
modeling approach may be more suited for capturing the complexity in the noise.

Figure D.8 Illustration of the covariate shift introduced due to varying imaging modalities and
X-Ray dose levels.

We have collected a new dataset of X-Ray images featuring a standard test
object (a clock) using the Azurion Image-Guided Therapy (IGT) system. These
images, stored in Dicom format with a resolution of 12 bits per pixel, were ob-
tained under various imaging conditions. This included: (a) two different levels
of radiation dose (low and normal) and (b) the use of both pulsed fluoroscopy
(subsequently referred to as fluoroscopy) and continuous radiation (subsequently
referred to as exposure). These experiments were also conducted at (c) two differ-
ent distances between the source and the image (SID) of 110 cm and 90 cm. The
dataset includes images from six distinct modes of operation, as illustrated in Fig-
ure D.9: Mode 0 (exposure with a normal dose at 110-cm SID), Mode 1 (exposure
with a low dose at 110-cm SID), Mode 2 (exposure with a normal dose at 90-cm
SID), Mode 3 (exposure with a low dose at 90-cm SID), Mode 4 (fluoroscopy with
a normal dose at 110-cm SID), and Mode 5 (fluoroscopy with a low dose at 90-cm
SID).

Starting with Mode 0 as the reference, we anticipate significant variations
in data characteristics up to Mode 5, which is expected to be the most OOD.
Although the complete dataset encompasses 18 modes across two environments,
this research will limit its discussion to the aforementioned six modes for clarity.

D.6 Detailed results on the X-Ray dataset
Figure D.10 depicts the performance of the DDPM model at various reconstruc-
tion starting points T . It can be seen that T = 250 yields the best performance,
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Figure D.9 Low-frequency and high-frequency components of patches from 6 modes/settings.

irrespective of the metric and LPIPS at T = 250 the overall best performance.

Figure D.10 Results obtained with the DDPM on X-Ray Mode 0 vs. Mode 1-5. The figure depicts
mean AUROC obtained from reconstructions at different starting points, T.
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D.7 Ablation experiments
This section details a series of ablation experiments conducted, including an anal-
ysis of the effect of the individual components in CovariateFlow on the detection
performance (Table D.21), mean scores per severity of the models and resource
aspects are depicted in Table D.22, model performance on a typically semantic
OOD detection problem in Table D.23 and finally an example (Figure D.11) of
heteroscedastic high-frequency components sampled from the fully invertible
CovariateFlow.

In our ablation experiments, we test the effect of explicitly modelling the con-
ditional distribution between the low-frequency and high-frequency signal com-
ponents as described in Section 6.5.2. This is achieved by training and evaluating
the CovariateFlow model in four different settings: (1) unconditional coupling
flows with the full input image, (2) unconditional coupling flows subject to only
the high-frequency components of the image, (3) unconditional coupling flows
subject to the high-frequency components and a conditional signal-dependent
layer additionally subject to the low-frequency image components and finally,
(4) the high-frequency image components applied to the conditional coupling
flows and a signal dependent layer subject to the low-frequency components. For
each of these implementations we follow the exact same training methodologies
as described in Section D.1. All the images are encoded at 16 bit depth during
dequantization to ensure comparability.

CIFAR10 CIFAR10-C
Model mean BPD↓ LL↑/ Typicality↑/ NSD↑

Full Image Unconditional (1) 11.32 56.6 / 64.2 / 67.8
High Frequency & Unconditional (2) 9.85 57.9 / 40.8 / 65.5

High Frequency & Unconditional + SDL (3) 9.77 58.4 / 40.0 / 62.6
High Frequency & Conditional + SDL (4) 5.48 58.3 / 45.5 / 74.9

Table D.21 Results (Bits per dimension or AUROC) obtained from the ablation Experiments on
CovariateFlow with CIFAR10(-C).

From Table D.21 it can be seen that while model 1 is limited in modeling the
complete data distribution (11.32 Bits per dimension (BPD)), it performs well
on detecting OOD covariate shift with NSD (AUROC 67.8%), comparable to the
performance obtained with GLOW. Only using the high-frequency image com-
ponents in an unconditional setting (model 2) yields a somewhat lower OOD
detection performance of 65.5% AUROC. Introducing the SDL (model 3), lowers
the mean BPD and improves on LL-based OOD detection (58.4%), but adversely
effects the NSD evaluation (62.6%). While the SDL layer does not show improve-
ment in the detection performance, it significantly aided in satabalizing model
training. Finally (model 4), conditioning every coupling flow in the network on
the low-frequency content significantly improves modelling the high-frequency
components (9.77 BPD → 5.48 BPD), indicating the value in the additional in-
formation. Modelling this conditional relation between the low-frequency and
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high-frequency components also proves very effective in detecting OOD covariate
shift. The model achieves a mean AUROC of 74.9% at detecting covariate fac-
tors across all variations and degredations when evaluated with NSD. Table D.22

Mean distance / CIFAR10-C severity Models Size Inference Speed
Model 1 2 3 4 5 (# parameters) milliseconds

Vanilla VAE [259] (SSIM + KL Div) 0.0365 0.0367 0.0381 0.0408 0.0430 9,436,867 4.1ms
AVAE [267] (MSE + KL Div + Adv Loss) 0.066 0.073 0.078 0.086 0.0992 11,002,373 9.1ms

DDPM [269] (T20: LPIPS) 0.7 0.8 0.9 1.0 1.4 17,714,563 34.1ms
DDPM [269] (T20: LPIPS + MSE) 1.6 1.8 2.3 2.8 3.6 17,714,563 34.1ms

GLOW [206] (LL) 0.73 1.1 1.2 1.4 238,10.9 44,235,312 65.8ms
GLOW [258] (Typicality) 2.2 2.8 2.8 2.9 3.2 44,235,312 178.3ms

GLOW (NSD) 1.2 1.7 1.9 2.2 411,753.0 44,235,312 178.3ms
CovariateFlow (LL) 1.1 1.5 1.7 2.0 2.2 945,882 22.5ms

CovariateFlow (Typicality) 0.02 0.03 0.04 0.05 0.07 945,882 59.6ms
CovariateFlow (NSD) 2.3 2.9 3.4 3.7 4.3 945,882 59.6ms

Table D.22 Model specific details and results. The mean distance (measured differently per model)
per severity, the number of trainable parameters and the inference time are depicted. Note that the
DDPM is evaluated multiple times to obtain a detection score.

presents additional information about each of the models employed in this re-
search. This table showcases the mean distance measurements (CIFAR10-C), taken
under different evaluation criteria, across increasing severity levels of covariate
shifts within the dataset. Such a detailed breakdown allows for a nuanced un-
derstanding of each model’s resilience and adaptability to changes in input data
distribution. Notably, the LL evaluations of GLOW at the highest severity level
encountered numerical stability issues, leading to the substitution of some results
with the maximum representable floating-point number. This adjustment, while
necessary, underscores the challenges in maintaining computational integrity un-
der extreme conditions and the importance of implementing robust handling
mechanisms for such anomalies. It is evident from the data that there is a con-
sistent trend of increasing mean distance scores across all models as the severity
level escalates, highlighting the impact of covariate shift on model performance.
This trend underscores the ability to quantify covariate shift, although only briefly
evaluated here. Furthermore, the table delineates the model size, quantified by
the number of trainable parameters, and the inference speed, measured in mil-
liseconds. These metrics are critical for understanding the trade-offs between
model complexity, computational efficiency, and performance.The data presented
in Table D.22 not only elucidates the ability to quantify covariate shifts, but also
emphasizes the importance of balancing model complexity and computational
efficiency when considering the model deployment conditions. Modeling the con-
ditional distribution between the low-frequency and high-frequency components
using CovariateFlow is highly effective in detecting out-of-distribution (OOD) co-
variate shifts. The CIFAR10 dataset, known for its diversity, encompasses a range
of in-distribution (ID) covariate conditions. When assessing CovariateFlow in the
context of a semantic OOD detection problem, such as distinguishing between
CIFAR10 and SVHN datasets, it is plausible that some covariate conditions in
CIFAR10 overlap with those in the SVHN dataset. Despite this potential overlap,

232



A
pp

en
di

x
D

D.7. Ablation experiments

OOD SVHN [366]
Models AUROC ↑

C
IF

A
R

10
ID

Reconstruction

DDPM [269] 97.9*/ 95.8

Explicit Density

Vanilla VAE (SSIM + KL Div) 24.4
AVAE (MSE + KL Div + Adv Loss) 32.0
VAE-FRL [291] 85.4*
GLOW-FRL [291] 91.5*
GLOW (LL) 0.7
GLOW (Typicality) 91.3
GLOW (NSD) 89.9
CovariateFlow (LL) 0.3
CovariateFlow (Typicality) 89.9
CovariateFlow (NSD) 90.0

Table D.23 The performance of various models on detecting SVHN as OOD when trained on
CIFAR10 as ID. * indicates values taken from the published paper.

CovariateFlow demonstrates robust performance in identifying the OOD covari-
ate conditions present in the SVHN dataset, as evidenced by the results shown in
Table D.23. Although the DDPM (utilizing all 1000 starting points) achieves the
best performance, CovariateFlow offers competitive results. This is notable given
its significantly smaller size and its specific design focus on covariate conditions
rather than semantic content.

Figure D.11 High-frequency sample when conditioned on a low frequency image. The sample clearly
shows the conditioning on the low-frequency image, with high-frequency components generated
along the watch edges, the time and more uniformly distributed background noise on the arm.
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[108] M. H. Shaker and E. Hüllermeier. “Ensemble-based uncertainty quantification: Bayesian
versus credal inference”. In: Workshop Computational Intelligence, Proceedings 31. Vol. 25. 2021,
p. 63.

[109] D. Pfau. “A generalized bias-variance decomposition for bregman divergences”. In: Unpub-
lished manuscript (2013).

[110] N. Gupta, J. Smith, B. Adlam, and Z. Mariet. “Ensembling over classifiers: a bias-variance
perspective”. In: arXiv preprint arXiv:2206.10566 (2022).

[111] U. Von Luxburg and B. Schölkopf. “Statistical learning theory: Models, concepts, and results”.
In: Handbook of the History of Logic. Vol. 10. Elsevier, 2011, pp. 651–706.

[112] B. Agarwal, A. M. Correa, and L. Ho. “Survival in Pancreatic Carcinoma Based on Tumor
Size”. In: Pancreas 36, e (2008), pp. 15–20.

[113] R. L. Siegel, K. D. Miller, and A. C. S. Jemal. “CA”. In: Cancer J. Clin. 2019.69 (2019), pp. 7–34.

240



B
ib

lio
gr

ap
hy

Bibliography

[114] J. C. Ardengh, G. A. de Paulo, and A. P. Ferrari. “Pancreatic Carcinomas Smaller than 3.0 Cm:
Endosonography (EUS) in Diagnosis”. In: Staging and Prediction of Resectability. HPB (Oxford)
5 (2003), pp. 226–230.

[115] K. Y. Elbanna, H.-J. Jang, and T. K. Kim. “Imaging Diagnosis and Staging of Pancreatic Ductal
Adenocarcinoma: A Comprehensive Review”. In: Insights Imaging 11 (2020), p. 58.

[116] J. D. Kang, S. E. Clarke, and A. F. Costa. “Factors Associated with Missed and Misinterpreted
Cases of Pancreatic Ductal Adenocarcinoma”. In: Eur. Radiol 31 (2021), pp. 2422–2432.

[117] S. H. Yoon, J. M. Lee, J. Y. Cho, K. B. Lee, J. E. Kim, S. K. Moon, S. J. Kim, J. H. Baek, S. H. Kim,
S. H. Kim, et al. “Small”. In: 20 Mm) Pancreatic Adenocarcinomas: Analysis of Enhancement
Patterns and Secondary Signs with Multiphasic Multidetector CT. Radiology 259 (2011),
pp. 442–452.

[118] J. C. Wong and S. Raman. “Surgical Resectability of Pancreatic Adenocarcinoma: CTA”. In:
Abdom. Imaging 35 (2010), pp. 471–480.

[119] S. Gangi, J. G. Fletcher, M. A. Nathan, J. A. Christensen, W. S. Harmsen, B. S. Crownhart, and
S. T. Chari. “Time Interval between Abnormalities Seen on CT and the Clinical Diagnosis of
Pancreatic Cancer: Retrospective Review of CT Scans Obtained before Diagnosis”. In: AJR.
Am. J. Roentgenol 182 (2004), pp. 897–903.

[120] K. M. Jang, S. H. Kim, Y. K. Kim, K. D. Song, S. J. Lee, and D. M. P. D. A. Choi. “Assessment
of Early Imaging Findings on Prediagnostic Magnetic Resonance Imaging”. In: Eur. J. Radiol
84 (2015), pp. 1473–1479.

[121] S. S. Ahn, M.-J. Kim, J.-Y. Choi, H.-S. Hong, Y. E. Chung, and J. S. Lim. “Indicative Findings
of Pancreatic Cancer in Prediagnostic CT”. In: Eur. Radiol 19 (2009), pp. 2448–2455.

[122] D. P. Singh, S. Sheedy, A. H. Goenka, M. Wells, N. J. Lee, J. Barlow, A. Sharma, H. Kand-
lakunta, S. Chandra, S. K. Garg, et al. “Computerized Tomography Scan in Pre-Diagnostic
Pancreatic Ductal Adenocarcinoma: Stages of Progression and Potential Benefits of Early
Intervention: A Retrospective Study”. In: Pancreatology 20 (2020), pp. 1495–1501.

[123] M. J. A. M. Bakens, Y. R. B. M. van Gestel, M. Bongers, M. G. H. Besselink, C. H. C. Dejong,
I. Q. Molenaar, O. R. C. Busch, V. E. P. P. Lemmens, and I. H. J. de Hingh. “T.; Dutch Pancreatic
Cancer Group Hospital of Diagnosis and Likelihood of Surgical Treatment for Pancreatic
Cancer”. In: Br. J. Surg 102 (2015), pp. 1670–1675.

[124] J. R. Treadwell, H. M. Zafar, M. D. Mitchell, K. Tipton, U. Teitelbaum, and J. Jue. “Imaging
tests for the diagnosis and staging of pancreatic adenocarcinoma: A meta-analysis”. en. In:
Pancreas 45.6 (2016), pp. 789–795.

[125] M. Hidalgo. “Pancreatic cancer”. en. In: N. Engl. J. Med. 362.17 (2010), pp. 1605–1617.
[126] S. Park, L. C. Chu, R. H. Hruban, B. Vogelstein, K. W. Kinzler, A. L. Yuille, D. F. Fouladi, S.

Shayesteh, S. Ghandili, C. L. Wolfgang, et al. “Differentiating Autoimmune Pancreatitis from
Pancreatic Ductal Adenocarcinoma with CT Radiomics Features”. In: Diagn. Interv. Imaging
101 (2020), pp. 555–564.

[127] S. Ziegelmayer, G. Kaissis, F. Harder, F. Jungmann, T. Müller, M. Makowski, and R. Braren.
“Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrim-
ination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus
Autoimmune Pancreatitis”. In: AIP). J. Clin. Med 9 (2020).

[128] F. Rigiroli, J. Hoye, R. Lerebours, K. J. Lafata, C. Li, M. Meyer, P. Lyu, Y. Ding, F. R. Schwartz,
N. B. Mettu, et al. “CT Radiomic Features of Superior Mesenteric Artery Involvement in
Pancreatic Ductal Adenocarcinoma: A Pilot Study”. In: Radiology 301 (2021), pp. 610–622.

[129] L. C. Chu, S. Park, S. Kawamoto, Y. Wang, Y. Zhou, W. Shen, Z. Zhu, Y. Xia, L. Xie, F. Liu,
et al. “Application of Deep Learning to Pancreatic Cancer Detection: Lessons Learned From
Our Initial Experience”. In: J. Am. Coll. Radiol 16 (2019), pp. 1338–1342.

[130] S.-L. Liu, S. Li, Y.-T. Guo, Y.-P. Zhou, Z.-D. Zhang, S. Li, and Y. Lu. “Establishment and
Application of an Artificial Intelligence Diagnosis System for Pancreatic Cancer with a Faster
Region-Based Convolutional Neural Network”. In: Chin. Med. J. (Engl) 132, 2019, pp. 2795–
2803.

[131] Z. Zhu, Y. Xia, L. Xie, E. K. Fishman, and A. L. Yuille. “Multi-scale coarse-to-fine segmentation
for screening pancreatic ductal adenocarcinoma”. In: Medical Image Computing and Computer
Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October
13–17, 2019, Proceedings, Part VI 22. Springer. 2019, pp. 3–12.

241



B
ibliography

B I B L I O G R A P H Y

[132] L. C. Chu, S. Park, S. Kawamoto, D. F. Fouladi, S. Shayesteh, E. S. Zinreich, J. S. Graves, K. M.
Horton, R. H. Hruban, A. L. Yuille, et al. “Utility of CT Radiomics Features in Differentiation
of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue”. In: AJR. Am. J.
Roentgenol 213 (2019), pp. 349–357.

[133] K.-L. Liu, T. Wu, P.-T. Chen, Y. M. Tsai, H. Roth, M.-S. Wu, W.-C. Liao, and W. Wang. “Deep
Learning to Distinguish Pancreatic Cancer Tissue from Non-Cancerous Pancreatic Tissue: A
Retrospective Study with Cross-Racial External Validation”. In: Lancet. Digit. Heal 2, e303–
e313 (2020).

[134] Z. Zhang, S. Li, Z. Wang, and Y. A. Lu. “Novel and Efficient Tumor Detection Framework for
Pancreatic Cancer via CT Images”. 2020.

[135] H. Ma, Z.-X. Liu, J.-J. Zhang, F.-T. Wu, C.-F. Xu, Z. Shen, C.-H. Yu, and Y.-M. Li. “Construction
of a Convolutional Neural Network Classifier Developed by Computed Tomography Images
for Pancreatic Cancer Diagnosis”. In: World J. Gastroenterol 26 (2020), pp. 5156–5168.

[136] K. Si, Y. Xue, X. Yu, X. Zhu, Q. Li, W. Gong, T. Liang, and S. Duan. “Fully End-to-End Deep-
Learning-Based Diagnosis of Pancreatic Tumors”. In: Theranostics 11 (2021), pp. 1982–1990.

[137] J.-J. Qiu, J. Yin, W. Qian, J.-H. Liu, Z.-X. Huang, H.-P. Yu, L. Ji, and X.-X. A. Zeng. “Novel
Multiresolution-Statistical Texture Analysis Architecture: Radiomics-Aided Diagnosis of
PDAC Based on Plain CT Images”. In: Med. Ed. by I. Trans. Imaging 40, 2021, pp. 12–25.

[138] S. Ebrahimian, R. Singh, A. Netaji, K. S. Madhusudhan, F. Homayounieh, A. Primak, F. Lades,
S. Saini, M. K. Kalra, and S. Sharma. “Characterization of Benign and Malignant Pancreatic
Lesions with DECT Quantitative Metrics and Radiomics”. In: Acad. Radiol 29 (2022), pp. 705–
713.

[139] N. Alves, M. Schuurmans, G. Litjens, J. S. Bosma, J. Hermans, and H. Huisman. “Fully
Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on
Computed Tomography”. In: Cancers (Basel) 14 (2022).

[140] B. Kenner, S. T. Chari, D. Kelsen, D. S. Klimstra, S. J. Pandol, M. Rosenthal, A. K. Rustgi, J. A.
Taylor, A. Yala, N. Abul-Husn, et al. “Artificial Intelligence and Early Detection of Pancreatic
Cancer: 2020 Summative Review”. In: Pancreas 50 (2021), pp. 251–279.
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generation and detection of highly reliable fiducial markers under occlusion”. In: Pattern
Recognition 47.6 (2014), pp. 2280–2292. I S S N: 0031-3203.

[334] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).
[335] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N. Navab. “Model

Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Clut-
tered Scenes”. In: Computer Vision – ACCV 2012. Ed. by K. M. Lee, Y. Matsushita, J. M. Rehg,
and Z. Hu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 548–562. I S B N: 978-3-
642-37331-2.

[336] V. Lepetit, F. Moreno-Noguer, and P. Fua. “EP n P: An accurate O (n) solution to the P n P
problem”. In: International journal of computer vision 81 (2009), pp. 155–166.

[337] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh. “CSPNet: A
new backbone that can enhance learning capability of cnn”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 390–391.

[338] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. “The Pascal Visual
Object Classes (VOC) Challenge”. In: International Journal of Computer Vision 88.2 (2010),
pp. 303–338.

252

https://arxiv.org/abs/1701.05498


B
ib

lio
gr

ap
hy

Bibliography

[339] I. Sárándi, T. Linder, K. O. Arras, and B. Leibe. “Synthetic occlusion augmentation with
volumetric heatmaps for the 2018 eccv posetrack challenge on 3d human pose estimation”.
In: arXiv preprint arXiv:1809.04987 (2018).

[340] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan,
P. Doll’a r, and C. L. Zitnick. “Microsoft COCO: Common Objects in Context”. In: CoRR
abs/1405.0312 (2014). arXiv: 1405.0312.

[341] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, et al. “Uncertainty-driven 6d
pose estimation of objects and scenes from a single rgb image”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 3364–3372.

[342] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. “Ssd-6d: Making rgb-based 3d de-
tection and 6d pose estimation great again”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 1521–1529.

[343] Y. Bukschat and M. Vetter. EfficientPose: An efficient, accurate and scalable end-to-end 6D multi
object pose estimation approach. Tech. rep. 2020. arXiv: 2011.04307v2.

[344] F. Manni, A. Elmi-Terander, G. Burström, O. Persson, E. Edström, R. Holthuizen, C. Shan,
S. Zinger, F. van der Sommen, and P. H. N. de With. “Towards Optical Imaging for Spine
Tracking without Markers in Navigated Spine Surgery”. In: Sensors 20.13 (2020). I S S N: 1424-
8220.

[345] M. Kisantal, S. Sharma, T. H. Park, D. Izzo, M. Märtens, and S. D’Amico. “Satellite pose
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